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a b s t r a c t 

Multi-view subspace clustering aims at separating data points into multiple underlying subspaces accord- 

ing to their multi-view features. Existing low-rank tensor representation-based multi-view subspace clus- 

tering algorithms are robust to noise and can preserve the high-order correlations of multi-view features. 

However, they may suffer from two common problems: (1) the local structures and different importance 

of each view feature are often neglected; (2) the low-rank representation tensor and affinity matrix are 

learned separately. To address these issues, we propose a unified framework to learn the Graph regu- 

larized Low-rank representation Tensor and Affinity matrix (GLTA) for multi-view subspace clustering. 

In the proposed GLTA framework, the tensor singular value decomposition-based tensor nuclear norm 

is adopted to explore the high-order cross-view correlations. The manifold regularization is exploited to 

preserve the local structures embedded in high-dimensional space. The importance of different features 

is automatically measured when constructing the final affinity matrix. An iterative algorithm is developed 

to solve GLTA using the alternating direction method of multipliers. Extensive experiments on seven chal- 

lenging datasets demonstrate the superiority of GLTA over the state-of-the-art methods. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Subspace clustering [1] has gained increasing attention in pat-

ern recognition and machine learning communities [2–4] . Accord-

ng to the available sources, subspace clustering methods can be

oughly grouped into two categories: single-view subspace cluster-

ng and multi-view subspace clustering. 

Single-view subspace clustering: Single-view subspace cluster- 

ng is the clustering of data points into multiple subspaces while

nding a low-dimensional subspace to fit each group of data points

2] . Sparse subspace clustering (SSC) [2] and low-rank represen-

ation (LRR) [3] are two representative works of single-view sub-

pace clustering. Many variants of SSC and LRR have been proposed

5,6] . However, these methods perform the clustering task using

nly single-view feature and fail to explore the correlation among

he features of different sources. 

Multi-view subspace clustering: “Feature” refers to “an indi-

idual measurable property or characteristic of an object”. For ex-

mple, three typical features of images are color, textures, and

dges. “View” usually refers to the sources of feature acquisition

r the perspectives of feature estimation. For example, views may
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efer to Local Binary Pattern (LBP), Gabor, and Histogram of Ori-

nted Gradients (HOG). In real applications, the data characteris-

ics can be modeled from different views (or sources). For exam-

le, documents can be translated into different languages for nat-

ral language processing; for action recognition, action sequences

ay be captured by RGB, depth, and skeleton sensors. An intuitive

xample of multi-view features is shown in Fig. 1 (b). The features

rom different views are complementary to each other since each

iew usually characterizes partial knowledge of the original ob-

ect or data. This is the reason why multi-view clustering meth-

ds would achieve better performance than single-view cluster-

ng ones. For single-view clustering methods, there are two ways

o handle multi-view features. They perform single-view cluster-

ng methods either on each feature individually, or on the con-

atenated features. However, these above two schemes may fail to

ake full use of the correlation among multiple features. Multi-

iew subspaces refer to multiple subspaces with multi-view fea-

ures for a set of data points. Considering that a set of data points

re usually drawn from a union of several subspaces, multi-view

ubspace clustering refers to the problem of separating data into

ultiple underlying subspaces according to their multi-view fea-

ures. The main difference between the single-view subspace clus-

ering and multi-view subspace clustering is that the former ob-

ains the clustering results using the single feature while the later

https://doi.org/10.1016/j.patcog.2020.107441
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107441&domain=pdf
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Fig. 1. The flowchart of the proposed GLTA. Multi-view features (b) are extracted from (a) original images. Unlike those existing multi-view clustering methods which learn 

the representation tensor (d) and affinity matrix (e) in two separate steps, the proposed GLTA not only learns (d) and (e) simultaneously, but also takes the local structures 

(c) into consideration in a unified manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

s  

t  

f  

f  

m  

t  

i  

d

 

t  

p  

t  

m  

t  

t  

m  

h  

c  

a  

t  

o  

m  

i  

a  

s  

l  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  
uses multiple complementary features for clustering. Therefore, it

is of vital importance to design efficient methods to learn the un-

derlying intrinsic information hidden in different views for improv-

ing clustering performance. 

Considerable effort s have been made to develop efficient multi-

view clustering (MVC) algorithms, such as the multi-view k -

means clustering [7] , co-regularized MVC [8] , canonical correlation

analysis-based clustering [9] , and low-rank representation-based

MVC [10–14] . Due to the high efficiency and excellent performance,

the low-rank representation-based multi-view subspace clustering

has become the mainstream [12,13] . Generally, the procedures of

these methods can be roughly divided into three steps: Step 1:

learn the representation matrix or tensor using different subspace

learning approaches, such as SSC [2] , LRR [3] , and others [11,12,15] ;

Step 2: construct the affinity matrix by averaging all representa-

tion matrices, where the affinity matrix (also called similarity ma-

trix) aims at measuring the similarity between two data points;

Step 3: obtain the clustering results using the spectral clustering

algorithm [16] with the affinity matrix. The core of clustering is

to construct an informative affinity matrix. This is mainly because

the clustering performance highly depends on the affinity matrix.

Many works focus on how to directly learn a well-designed repre-

sentation matrix or tensor for the construction of the affinity ma-

trix. For example, Maria et al. [4] proposed to learn a low-rank and

sparse representation matrix. Wang et al. [17] used the intact space

learning technique to learn an informative intactness-aware repre-

sentation matrix. Zhu et al. [18] developed a structured multi-view

subspace clustering method to learn general and specific represen-

tation matrices. The representation tensor was encoded either by

the tensor nuclear norm [11,12] or by the diversity of all represen-

tations [19] . 

Although the above low-rank matrix or tensor representation-

based MVC methods have achieved satisfactory performance, they

still suffer from the following limitations: (1) they often ignore

the local structures as shown in Fig. 1 (c). The methods in [4,10–

13,17,18] extend the (tensor) robust principal component analysis

or (tensor) LRR [3,20,21] for multi-view subspace clustering by

considering only the global low-rank property of the representa-

tion matrix or tensor. Thus, the locality and similarity information

of samples may be ignored in the learning processes [22,23] ; (2)

they separately learn the low-rank representation and the affinity

matrix. To obtain the clustering results, the methods in [11,12] first

pursue the representation tensor in Step 1 by using different tensor

rank approximations and then construct the final affinity matrix

in Step 2 by averaging all representation matrices. In such a way,

two critical factors in clustering, i.e. , the representation tensor and

affinity matrix, are learned separately. This would ignore the high

dependence between them. Thus, there is no guarantee of recov-

m  
ring an overall optimal clustering result. Meanwhile, the existing

cheme of constructing the affinity matrix treats the representa-

ion matrices of different views equally. This may lead to unsatis-

actory performance in real applications. It is mainly because dif-

erent features characterize specific and partly independent infor-

ation of the data and thus may have different contributions for

he final clustering results [24] . An intuitive example is reported

n Table 9 in Section 5.3 . We can see that the clustering results of

ifferent views vary. 

Such two concerns are not well solved in existing low-rank

ensor representation-based MVC methods. In this paper, we pro-

ose a novel multi-view subspace clustering method by learning

he G raph regularized L ow-rank representation T ensor and A ffinity

atrix (GLTA) in a unified framework as shown in Fig. 1 . Given

he multi-view features as shown in Fig. 1 (b), the representation

ensor ( Fig. 1 (d)) and the affinity matrix ( Fig. 1 (e)) are learned si-

ultaneously. Considering the fact that different view features may

ave various contributions to the clustering performance, GLTA

an automatically assign corresponding weight to each view by

 constrained quadratic programming. Meanwhile, the local struc-

ures as shown in Fig. 1 (c) are also preserved in the construction

f the representation tensor. Therefore, the main purpose of this

anuscript is to propose an efficient multi-view subspace cluster-

ng method not only to learn the low-rank representation tensor

nd affinity matrix simultaneously, but also to integrate the local

tructures into a unified manner. In such a way, the global and

ocal structures of multi-view features can be well explored. The

ain contributions of this work are summarized as follows. 

• Different from the existing low-rank representation-based MVC

which learns the representation matrix/tensor and affinity ma-

trix in a sequential way, the proposed GLTA not only learns the

representation tensor and affinity matrix simultaneously, but

also considers the local structures and the various contributions

of multi-view features. 
• GLTA exploits the tensor singular value decomposition-based

tensor nuclear norm to encode the low-rank property, adopts

the manifold regularization to depict the local structures,

and adaptively assigns various weights for multi-view features

when constructing the final affinity matrix. In this way, the

high-order correlations among different views and the local

structures can be explicitly captured. 
• An iterative algorithm is developed to solve GLTA using the al-

ternating direction method of multipliers. Extensive experiment

evaluations on seven challenging datasets demonstrate that

GLTA outperforms the state-of-the-art clustering approaches. 

The remaining of this paper is structured as follows.

ection 2 briefly reviews related works on single-view and

ulti-view subspace clustering. Section 3 discusses the math-
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matical background. In Section 4 , we introduce the proposed

ethod for multi-view subspace clustering and design an iterative

lgorithm. We evaluate the performance of the proposed method

n Section 5 and conclude the whole paper in Section 6 . 

. Related work 

In this section, we briefly review several popular single-view

nd multi-view subspace clustering methods based on low-rank

atrix or tensor approximation. 

.1. Single-view subspace clustering 

Under the basic assumption that the observed data points

re generally drawn from low-dimensional subspaces, the popular

ethods for single-view subspace clustering can be generally for-

ulated as follows: 

in 

Z,E 
�(Z) + λϕ(E) s.t. X = X Z + E, diag(Z) = 0 , (1)

here X ∈ R 

d×n is the feature matrix with n samples and d -

imension feature. �( Z ) is the regularization which imposes de-

ired property on the representation matrix Z ∈ R 

n ×n . ϕ( E ) is to

emove noise E. λ > 0 is a trade-off parameter. The main differ-

nce among works in [2,3,15] is how to choose � . For instance,

SC minimizes the l 1 -norm [2] on Z to learn the local structure of

ata, while LRR [3] enforces the low-rank constraint on Z to cap-

ure the global structure. Least squares regression (LSR) [15] ex-

loits the Frobenius-norm to model both Z and E . 

Subspace clustering methods have achieved great success in

arious applications including face and scene image clustering

3] , motion segmentation [3,25] , object detection [26] , commu-

ity clustering in social networks [27] , biclustering [28] and so on.

or more information of subspace clustering, please refer to [1,29] .

ince these methods assumed that the data lie in multiple linear

ubspaces, they may not be able to handle the nonlinear data. On

he other hand, for multi-view data, especially the heterogeneous

eatures, LRR, SSC, LSR and their variants [5,23,30] may cause a

ignificant performance degradation [11,12,19] since they focus on 

ingle-view feature. Thus they cannot deal with the multi-view

lustering task. 

.2. Multi-view subspace clustering 

To tackle the above problem, multi-view subspace cluster-

ng [11,12,19,22,31–33] takes advantages of multi-view features to 

oost the clustering performance, and has shown superiority over

ts single-view counterpart [12] . Most of existing multi-view sub-

pace clustering methods can be summarized as 

min 

Z (v ) ,E (v ) 

V ∑ 

v =1 

�(Z (v ) ) + λϕ(E (v ) ) s.t. 

X 

(v ) = X 

(v ) Z (v ) + E (v ) , diag(Z (v ) ) = 0 , (v = 1 , 2 , · · · , V ) , (2) 

here X 

( v ) denotes the v th feature matrix, its corresponding rep-

esentation matrix is denoted as Z (v ) ∈ R 

n ×n . d v is the dimension

f a sample vector in the v th feature matrix, n and V are the

umbers of data points and views, respectively. Similar to Eq. (1) ,

he studies in [4,11–13,18] used different regularizers to obtain dif-

erent characteristics. For example, works in [4,18] used the nu-

lear norm and l 1 norm to preserve the consistency and diver-

ity. Zhang et al. [11] exploited the unfolding-based tensor nuclear

orm and l 2,1 norm to capture the high-order correlations. How-

ver, it may yield unsatisfactory performance in real applications,

ince the unfolding-based tensor nuclear norm is a loose approxi-

ation of Tucker rank [20,21,34] . To deal with this issue, a newly
roposed tensor nuclear norm [20] was exploited in [12] to en-

ure the consensus among multiple views. The work in [35] pro-

osed to learn the latent representation to overcome the noise

nterference. As previously mentioned, one essential limitation of

hese low-rank tensor representation-based MVC methods is that

he representation tensor and affinity matrix are learned in a sep-

rate way. 

This paper is an extension of our conference work [36] . In [36] ,

e used Tucker decomposition to encode the low-rank property

f the representation tensor. Due to the difficulty of the desired

ank of Tucker decomposition, we utilize the tensor singular value

ecomposition-based tensor nuclear norm instead of the Tucker

ecomposition in this paper. 

. Preliminaries 

Before further discussions, we introduce the fundamental for-

ulas used in the paper and the tensor singular value decompo-

ition (t-SVD)-based tensor nuclear norm (see Definition 3.3 ). For

etails of tensor and its applications, please see [37] . 

Following [37] , calligraphy letters, capital letters, and lower-

ase letters ( e.g. , X , X, x ) denote tensors, matrices, and vectors,

espectively. The inner product of X and Y in R 

N 1 ×N 2 ×N 3 is de-

ned as 〈X , Y〉 = vec (X ) T vec (Y) , and the Frobenius norm of X 

s defined as ‖X ‖ F = 

√ 〈X , X 〉 . Operator vec ( X ) is to stacking all

olumns of the matrix X into a vector. We denote the l 1 -norm of

 as ‖X ‖ 1 = ‖ vec (X ) ‖ 1 and the infinity norm of X as ‖X ‖ ∞ 

=
ax i, j,k |X (i, j, k ) | . The k th frontal slice of tensor X is denoted as

 

(k ) . Performing the fast Fourier transformation (FFT) along the

ube fibers of X is denoted as ˆ X = fft (X , [] , 3) . Likewise, we can

btain X from 

ˆ X by the inverse FFT, i.e. , X = ifft ( ˆ X , [] , 3) . 

We first introduce several block operators which are the foun-

ation of t-SVD [20,38] . For a tensor X ∈ R 

N 1 ×N 2 ×N 3 , its block cir-

ular matrix bcirc (X ) and block diagonal matrix bdiag (X ) are de-

ned as 

bcirc (X ) = 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) X 

(N 3 ) · · · X 

(2) 

X 

(2) X 

(1) · · · X 

(3) 

. . . 
. . . 

. . . 
. . . 

X 

(N 3 ) X 

(N 3 −1) · · · X 

(1) 

⎤ 

⎥ ⎥ ⎦ 

, 

diag (X ) = 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) 

X 

(2) 

. . . 

X 

(N 3 ) 

⎤ 

⎥ ⎥ ⎦ 

. 

he block vectorization is defined as bvec (X ) = [ X 

(1) ; · · · ;X 

(N 3 ) ] .

he inverse operations of bvec and bdiag are defined as

vfold ( bvec (X )) = X and bdfold ( bdiag (X )) = X , respectively. Let

 ∈ R 

N 2 ×N 4 ×N 3 . The t-product X ∗ Y is an N 1 × N 4 × N 3 tensor, 

 ∗ Y = bvfold ( bcirc (X ) ∗ bvec (Y)) . 

he transpose of X is X 

T ∈ R 

N 2 ×N 1 ×N 3 by transposing each of the

rontal slices and then reversing the order of transposed frontal

lices 2 through N 3 . The identity tensor I ∈ R 

N 1 ×N 1 ×N 3 is a tensor

hose first frontal slice is an N 1 × N 1 identity matrix and the re-

aining frontal slices are zero. A tensor X ∈ R 

N 1 ×N 1 ×N 3 is orthog-

nal if it satisfies 

 

T ∗ X = X ∗ X 

T = I. 

Based on the above knowledge, we can obtain the definition of

-SVD. 

efinition 3.1 ((t-SVD)) . For X ∈ R 

N 1 ×N 2 ×N 3 , its t-SVD is given by 

 = U ∗ S ∗ V T , 
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Fig. 2. The t-SVD of a tensor of size N 1 × N 2 × N 3 . 
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where U ∈ R 

N 1 ×N 1 ×N 3 and V ∈ R 

N 2 ×N 2 ×N 3 are orthogonal tensors,

S ∈ R 

N 1 ×N 2 ×N 3 is an f-diagonal tensor. Each of its frontal slices is

a diagonal matrix. 

Fig. 2 shows the t-SVD of a third-order tensor. As discussed

in [38] , t-SVD can be efficiently computed by matrix SVD in the

Fourier domain. Based on t-SVD, the tensor multi-rank is given as

follows. 

Definition 3.2 (Tensor multi-rank) . The tensor multi-rank of a ten-

sor X ∈ R 

N 1 ×N 2 ×N 3 is a vector r ∈ R 

N 3 ×1 with its i th element being

the rank of the i th frontal slice of ˆ X . 

Derived from the relationship between the rank function and

nuclear norm in the matrix case, the following t-SVD-based tensor

nuclear norm (t-SVD-TNN) is obtained. 

Definition 3.3 (t-SVD-TNN) . The t-SVD-TNN of a tensor X ∈
R 

N 1 ×N 2 ×N 3 , denoted as ‖X ‖ � 

, is defined as the sum of singular

values of all the frontal slices of ˆ X , i.e. , 

‖X ‖ � 

= 

min { N 1 ,N 2 } ∑ 

i =1 

N 3 ∑ 

k =1 

| ̂  S (i, i, k ) | . (3)

Note that t-SVD-TNN is a valid norm which is the tightest con-

vex relaxation to l 1 -norm of the tensor multi-rank [20] . 

4. GLTA for MVC 

In this section, we first propose a novel MVC method to learn

the G raph regularized L ow-rank representation T ensor and the

A ffinity matrix (GLTA) in a unified framework. Afterward, we de-

sign an iterative algorithm to solve GLTA by the alternating direc-

tion method of multipliers (ADMM). 

4.1. The proposed GLTA 

To address those concerns as discussed in Section 1 whlie

learning a reliable affinity matrix, we consider the following three

aspects: 

• According to the self-representation property [2,3] , each data

point in the v th view can be represented as a linear combina-

tion of other points, i.e. , X (v ) = X (v ) Z (v ) + E (v ) , where E ( v ) de-

⎧ ⎪ ⎨ 

⎪ ⎩ 

min 

Z,E,S,ω 
�(Z) ︸ ︷︷ ︸ 

low-rank tensor representation 

+ 

V ∑ 

v =1 

(
λ1 ‖ E (v ) ‖ 2 , 1 ︸ ︷︷ ︸ 

noise 

+ λ2 tr 
(
Z (v ) L (v ) Z ︸ ︷︷ 

local manifold

s.t. X 

(v ) = X 

(v ) Z (v ) +E (v ) , (v = 1 , 2 , · · · , V ) , Z = �(Z (1) , Z (2) , · ·
notes noise. Clearly, it is in general ill-posed without any re-

striction to obtain the representation matrix Z ( v ) and noise E ( v ) 

from X 

( v ) . Inspired by Liu et al. [3] , Zhang et al. [11] , Xie et al.

[12] , we introduce the low-rank tensor approximation to ex-

plore the high-order correlations between multiple views. 
• Following the assumption of graph embedding in [39] that if

two data points x (v ) 
i 

and x (v ) 
j 

are close in the original space,

their low-dimensional representations z (v ) 
i 

and z (v ) 
j 

should be

close to each other. This can be illustrated by the following

manifold regularization: 

∑ 

i 

∑ 

j 

‖ z (v ) 
i 

− z (v ) 
j 

‖ 

2 
2 W 

(v ) 
i j 

= 

1 

2 

tr(Z (v ) L (v ) Z (v ) 
T 

) , (4)

where W 

(v ) 
i, j 

is the similarity between x (v ) 
i 

and x (v ) 
j 

. The v th view

graph Laplacian matrix L ( v ) [23] is constructed in the k -nearest

neighbor fashion and defined as L (v ) = D 

(v ) − W 

(v ) , where D 

( v ) 

is a diagonal matrix and D 

(v ) 
i,i 

= 

∑ 

j W 

(v ) 
i, j 

. The trace of a matrix

is denoted as tr ( · ). Using Eq. (4) , the local structures hidden

in high-dimensional space can be well preserved [23] . 
• As in [11,12,25] , an intuitive way to construct the affinity matrix

is S = 

1 
V 

∑ 

v 

(
| Z (v ) | + | Z (v ) T | 

)
. This means that all representation

matrices are treated equally. As discussed before, we need to

assign different weights according to the importance of each

view. Therefore, we learn S by minimizing the linear combina-

tion of the residual ‖ Z (v ) − S‖ 2 F for each view. 

Considering the above three aspects, the proposed GLTA is for-

ulated as 

 λ3 ω v ‖ Z (v ) − S‖ 

2 
F ︸ ︷︷ ︸ 

consensus representation 

)
+ γ ‖ ω‖ 

2 
2 

V ) ) , ω ≥ 0 , �v ω v = 1 , 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(5)

here ‖ · ‖ 2,1 is the l 2,1 -norm to remove the sample-specific cor-

uptions. E = [ E (1) ; E (2) ; · · · ; E (V ) ] . Using �( · ), all representation

atrices { Z ( v ) } are merged to construct a 3-order representation

ensor Z ∈ R 

n ×n ×V as shown in Fig. 1 (b). The regularization �(Z)

s to depict the low-rank property of Z . S is the final affinity ma-

rix to be learned. λ1 , λ2 , λ3 and γ are nonnegative parameters.

 = [ ω 1 , ω 2 , · · · , ω V ] is the weight vector, whose entry ω v is the

elative weight of the v th view. 

Remarks: 

• From Eq. (5) , we can see that the low-rank representation ten-

sor Z and the affinity matrix S can be simultaneously learned in

a unified framework, such that a meaningful affinity matrix can

be obtained as the input of the spectral clustering algorithm in

[16] to yield the clustering results; 
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• The first term in Eq. (5) is to depict the low-rank property (the

global structure and high-order correlations) of the represen-

tation tensor Z while the second term can model the sample-

specific corruptions [3] ; 
• Using the manifold regularization, i.e. , the third term in Eq. (5) ,

the local structures of multi-view data can be preserved such

that the data points being close in the original space still have

similar representations; 
• The last term in Eq. (5) enforces different weights on different

views, so as to obtain an informative affinity matrix. To over-

come the difficulty of weight allocation, Eq. (5) can adaptively

assign weights on different f eatures by a constrained quadratic

programming. 

The proposed unified framework GLTA can cover several

xisting state-of-the-art MVC methods. For example, LT-MSC

11] and t-SVD-MSC [12] can be regarded as two special cases

f �(Z) is selected as the unfolding-based tensor nuclear norm

nd t-SVD-TNN respectively, and λ2 = λ3 = γ = 0 . The works in

21,34] have pointed that t-SVD-TNN has achieved superior per-

ormance than the other tensor decomposition forms including

ANDECOMP/PARAFAC decomposition and Tucker decomposition 

n computer vision. Inspired by this, in the following subsection,

e will exploit the t-SVD-TNN to encode the low-rank tensor prop-

rty of Z . 

.2. Optimization of GLTA 

Using the t-SVD-TNN defined in Eq. (3) , i.e. , �(Z) = ‖Z‖ � 

, the

odel in Eq. (5) can be formulated as: 

min 

,E,S,ω 
‖Z‖ � 

+ 

V ∑ 

v =1 

(
λ1 ‖ E (v ) ‖ 2 , 1 

+ λ2 tr 
(
Z (v ) L (v ) Z (v ) 

T 
)

+ λ3 ω v ‖ Z (v ) − S‖ 

2 
F 

)
+ γ ‖ ω‖ 

2 
2 

s.t. X 

(v ) =X 

(v ) Z (v ) +E (v ) , (v = 1 , 2 , · · · , V ) , 

 = �(Z (1) , Z (2) , · · · , Z (V ) ) , ω ≥ 0 , �v ω v = 1 . 

(6) 

Since we impose both global low-rankness and local structure

riors on Z, Eq. (6) is coupled with respect to Z . To make Z sep-

rable, we adopt the variable-splitting technique [40,41] and intro-

uce one auxiliary tensor variable Y . Then, Eq. (6) can be reformu-

ated as the following optimization problem: 

min 

, Z,E,S,ω 
‖Z‖ � 

+ 

V ∑ 

v =1 

(
λ1 ‖ E (v ) ‖ 2 , 1 

+ λ2 tr 
(
Y (v ) L (v ) Y (v ) 

T 
)

+ λ3 ω v ‖ Y (v ) − S‖ 

2 
F 

)
+ γ ‖ ω‖ 

2 
2 

s.t. X 

(v ) =X 

(v ) Y (v ) +E (v ) , (v = 1 , 2 , · · · , V ) , 

 = �(Z (1) , Z (2) , · · · , Z (V ) ) , ω ≥ 0 , �v ω v = 1 , Z = Y. 

(7) 

he corresponding augmented Lagrangian function of Eq. (7) is 

 ρ (Y, Z, E, S, ω; { 
(v ) } , �) = ‖Z‖ � 

+ 

V ∑ 

v =1 

(
λ1 ‖ E (v ) ‖ 2 , 1 + λ2 tr 

(
Y (v ) L (v ) Y (v ) 

T 
)

+ λ3 ω v ‖ Y (v ) − S‖ 

2 
F 

)
+ γ ‖ ω‖ 

2 
2 

+ 

ρ
2 

( V ∑ 

v =1 

‖ X 

(v ) − X 

(v ) Y (v ) − E (v ) + 


(v ) 

ρ ‖ 

2 
F + ‖Z − Y + 

�
ρ ‖ 

2 
F 

)
, 

(8) 

here { 
(v ) ∈ R 

d v ×n } and � ∈ R 

n ×n ×V are Lagrange multipliers

ith respect to two equality constraints, respectively. ρ > 0 is the

enalty parameter. Borrowing the idea of alternative update strat-

gy [11,19,42] , Eq. (8) can be divided into the following six sub-

roblems: 
Step 1 Update Y: Given other variables in their previous itera-

ion, we can update Y by solving the following problem: 

in Y 
V ∑ 

v =1 

(
λ2 tr 

(
Y (v ) L (v ) Y (v ) 

T 
)

+ λ3 ω t, v ‖ Y (v ) − S t ‖ 

2 
F 

)
+ 

ρt 

2 

( V ∑ 

v =1 

‖ X 

(v ) − X 

(v ) Y (v ) − E (v ) t + 


(v ) 
t 

ρt 
‖ 

2 
F + ‖Z t − Y + 

�t 

ρt 
‖ 

2 
F 

)
. 

(9) 

q. (9) can be separated into V independent minimization prob-

ems and the v th minimization problem is 

in Y (v ) λ2 tr 
(
Y (v ) L (v ) Y (v ) 

T 
)

+ λ3 ω t, v ‖ Y (v ) 

− S t ‖ 

2 
F + 

ρt 

2 

(
‖ X 

(v ) Y (v ) − A 

(v ) 
t ‖ 

2 
F + ‖ Y (v ) − B 

(v ) 
t ‖ 

2 
F 

)
, 

(10) 

here A 

(v ) 
t = X (v ) − E (v ) t + 


(v ) 
t 
ρt 

and B (v ) t = Z (v ) t + 

�(v ) 
t 
ρt 

. By setting

he derivative of Eq. (10) with respect to Y ( v ) to zero, we

an yield a Sylvester equation M ∗ Y (v ) + Y (v ) ∗ N = C, where

 = (2 λ3 ω t, v + ρt ) I + ρt X 
(v ) T X (v ) , N = λ2 (L (v ) + L (v ) 

T 
) , and C =

 λ3 ω t, v S t + ρt 

(
X (v ) 

T 
A 

v 
t + B (v ) t 

)
. Then, the optimal solution of Y (v ) 

t+1 

an be obtained by the off-the-shelf solver, such as the Matlab

unction lyap . 

Step 2 Update Z : Fixing other variables, Z can be updated by

olving 

in 

Z 

1 

ρt 
‖Z‖ � 

+ 

1 

2 

‖Z − F t ‖ 

2 
F , (11)

here F t = Y t+1 − �t /ρt . Note that we need to rotate Z from size

 × n × V to n × V × n as shown in Fig. 3 . This is because of

wo reasons: (1) as in Eq. (3) , t-SVD-TNN performs the SVD on

ach frontal slice of ˆ Z , leading to capturing of the “spatial-shifting”

orrelation [34,38] . This means that t-SVD-TNN preserves only the

ow-rank property of intra-view. However, we hope to capture the

ow-rank property of inter-views. (2) the rotation operation can

ignificantly reduce the computation cost [12] . 

The closed-form solution of Eq. (11) can be obtained by the ten-

or tubal-shrinkage operator [12,43] : 

 t+1 = C V 
ρ
(F t ) = U ∗ C V 

ρt 

(S) ∗ V T , (12)

here F t = U ∗ S ∗ V T , and C V 
ρt 

(S) = S ∗ J , in which J is an f-

iagonal tensor whose diagonal element in the Fourier domain is

 (i, i, k ) = max { 1 − V/ρt 
S(i,i,k ) 

, 0 } . The details on the update of Z t+1 are

ummarized in Algorithm 1 . 

Step 3 Update E : Minimizing the augmented Lagrangian func-

ion in Eq. (8) with respect to E , we have 
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Algorithm 1 : Update of Z based on t-SVD. 

Input: tensor: F t ∈ R 

n ×V ×n ; parameter: τ = 

V 
ρt 

; 

1: ˆ F t = fft (X , [] , 3) ; 

2: for k = 1 to n do 

3: [ U (k ) , S (k ) , V (k ) ] = SVD ( ̂  F 

(k ) 
t ) ; 

4: J 

(k ) = diag( max { 1 − τ
S(i,i,k ) 

, 0 } ) , i = 1 , · · · , V ; 

5: �(k ) = S (k ) J 

(k ) ; 

6: ˆ Z 

(k ) = U (k ) �(k ) V (k ) T ; 

7: end for 

8: Z t+1 = ifft ( ˆ Z , [] , 3) ; 

Output: tensor Z t+1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 : GLTA for multi-view subspace clustering. 

Input: multi-view features: { X (v ) } ; parameters: λ1 , λ2 , λ3 , γ = 10 ; 

nearest neighbors number 5; graph Laplacian matrices { L (v ) } ; 
cluster number K; 

Initialize: Y 1 , Z 1 , E 1 , S 1 , 
1 , �1 initialized to 0 ; weight ω 1 , v = 

1 
V ; 

ρ1 = 10 −3 , β = 1 . 5 , ε = 10 −7 , t = 1 ; 

1: while not converged do 

2: for v = 1 to V do 

3: Update Y (v ) 
t+1 

according to Eq. (10); 

4: end for 

5: Update Z t+1 according to Algorithm 1; 

6: Update E t+1 according to Eq. (14); 

7: Update S t+1 according to Eq. (16); 

8: Update ω t+1 according to Eq. (18); 

9: Update 
(v ) 
t+1 

, �t+1 , and ρt+1 according to Eq. (19); 

10: Check the convergence condition in Eq. (20); 

11: end while 

Output: Affinity matrix S t+1 . 
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1 http://mlg.ucd.ie/datasets/segment.html 
E t+1 = argmin 

E 

V ∑ 

v =1 

λ1 ‖ E (v ) ‖ 2 , 1 + 

ρt 

2 

‖ E (v ) − T (v ) t ‖ 

2 
F 

= argmin 

E 

λ1 

ρt 
‖ E‖ 2 , 1 + 

1 

2 

‖ E − T t ‖ 

2 
F , (13)

where T (v ) t = X (v ) − X (v ) Y (v ) 
t+1 

+ 


(v ) 
t 
ρt 

and T t = [ T (1) 
t ; T (2) 

t ; · · · ; T (V ) t ] .

The j th column of E t+1 can be obtained by 

E t+1 (: , j) = 

⎧ ⎨ 

⎩ 

‖ F t (: , j) ‖ 2 − λ1 

ρt 

‖ F t (: , j) ‖ 2 

T t (: , j) , if 
λ1 

ρt 
< ‖ T t (: , j) ‖ 2 ;

0 , otherwise . 

(14)

Step 4 Update S : To obtain the optimal solution S t+1 , we can

minimize the augmented Lagrangian function in Eq. (8) with re-

spect to S as 

min 

S 

V ∑ 

v =1 

ω t, v ‖ Y (v ) 
t+1 

− S‖ 

2 
F . (15)

We also set the derivative of Eq. (15) with respect to S to zero. The

closed-form solution S t+1 is 

S t+1 = 

∑ 

v ω t, v Y 
(v ) 

t+1 ∑ 

v ω t, v 
= 

∑ 

v 
ω t, v Y 

(v ) 
t+1 

, (16)

which is based on the constraint 
∑ 

v ω t, v = 1 . 

Step 5 Update ω: The optimization of ω is transformed into the

following problem 

min 

ω 

V ∑ 

v =1 

ω v a 
(v ) 
t + γ ‖ ω‖ 

2 
2 , s.t. ω ≥ 0 , �v ω v = 1 , (17)

where a (v ) t = ‖ Y (v ) 
t+1 

− S t+1 ‖ 2 F . γ ‖ ω‖ 2 2 is used to smoothen the

weight distribution and avoid the futile solution [22] . Then,

Eq. (17) can be rewritten into the following quadratic programming

formulation 

min 

ω 
‖ ω + 

a t 

2 γ
‖ 

2 
2 , s.t. ω ≥ 0 , �v ω v = 1 . (18)

The above formula can be efficiently solved by any off-the-shelf

quadratic programming solver, such as quadprog . 

Step 6 Update { 
( v ) }, �, and ρ: The Lagrangian multipliers

{ 
( v ) }, � and the penalty parameter ρ can be updated by 


(v ) 
t+1 

= 
(v ) 
t + ρt (X 

(v ) − X 

(v ) Y (v ) 
t+1 

− E (v ) 
t+1 

) ;
�t+1 = �t + ρt (Z t+1 − Y t+1 ) ;
ρt+1 = min { β ∗ ρt , ρmax } , 

(19)

where β > 1 is to facilitate the convergence speed [44] . ρmax is

the maximum value of the penalty parameter ρ . The whole proce-

dure of solving Eq. (7) is summarized in Algorithm 2 , in which the
topping criterion is defined as follows: 

ax 

{
‖ X 

(v ) −X 

(v ) Y (v ) 
t+1 

−E (v ) 
t+1 

‖ ∞ 

, v = 1 , · · · ,V 

‖Z t+1 − Y t+1 ‖ ∞ 

}
≤tol, (20)

here tol > 0 is a pre-defined tolerance. Once the affinity matrix

 is obtained by GLTA ( Algorithm 2 ), the spectral clustering algo-

ithm [16] is carried out to yield the final clustering results. 

.3. Computation complexity 

The computation cost of Algorithm 2 is dominated by up-

ating Y, Z, and E . For Step 1, the computation cost of solv-

ng the Sylvester equation is O ( n 3 ). For Step 2, updating Z needs

(2 V n 2 log (n )) operations to calculate 3D FFT and inverse FFT, and

(V 2 n 2 ) operations for performing SVD on V number of n × V ma-

rices. For Step 3, it costs O(V n 2 ) operations. As for the remaining

teps, their computation costs can be ignored since they contain

nly the basic operations, such as matrix addition, subtraction, and

ultiplication. Thus, the computation complexity of Algorithm 2 is

 

(
T (V n 3 + 2 V n 2 log(n ) + V 2 n 2 ) 

)
, where T is the number of itera-

ions. As shown in Section 5.4 , the proposed GLTA can converge

ithin 30 ~ 45 iterations. 

. Experiments results 

To verify the effectiveness of the proposed GLTA, in this section,

e first conduct experiments to compare with twelve state-of-the-

rt clustering methods. Seven challenging datasets from three dif-

erent application areas are selected as the testing data. To provide

 comprehensive study of the proposed GLTA, we analyze GLTA

ith respect to three important parameters and report the empir-

cal convergence of GLTA. 

.1. Datasets 

Following [11,12,22] , we evaluate the performance of GLTA on

even challenging multi-view datasets, including: 

• BBC4view dataset and BBCSport dataset 1 : BBC4view and BBC-

Sport are news stories datasets. They contains 685 and 544 doc-

uments from BBC Sport website about sports news on 5 topics,

respectively. For each document, four different types of features

are extracted in BBC4view while two different types of features

are extracted in BBCSport. 

http://mlg.ucd.ie/datasets/segment.html


Y. Chen, X. Xiao and Y. Zhou / Pattern Recognition 106 (2020) 107441 7 

Table 1 

Summary of seven challenging multi-view databases. 

Category Dataset Instance View cluster 

BBC4view 685 4 5 

News stories BBCSport 544 2 5 

3Sources 169 3 6 

MSRC-V1 210 5 7 

Scene Scene-15 4485 3 15 

MITIndoor-67 5360 4 67 

Generic object COIL-20 1440 3 20 
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• 3Sources dataset 2 : It is a news stories dataset, which was

collected from three online news sources: BBC, Reuters, and

Guardian. It contains 416 distinct news stories from 6 classes.

Of them, 169 news documents are reported in all three sources

and each source serves as one view. 
• MSRC-V1 dataset : It contains 210 images in 7 classes, includ-

ing tree, building, airplane, cow, face, car, and bicycle. Following

[24] , five-view features, including 24-D (dimension, D) colour

moment (CM), 576-D histogram of oriented gradients (HOG),

512-D GIST, 254-D CENTRIST feature, and 256-D local binary

pattern (LBP) are extracted. 
• Scene-15 dataset [45] : It contains 4485 outdoor and indoor

scene images from 15 categories. Following [12] , three kinds of

image features, including 1800-D PHOW, 1180-D PRI-CoLBP, and

1240-D CENTRIST are extracted to represent Scene-15. 
• MITIndoor-67 dataset [46] : It consists of 15 thousand indoor

pictures spanning 67 different categories. We select one train-

ing subset including 5360 images for clustering. As in [12] , ex-

cept three features used in Scene-15, one handcrafted feature

from VGG-VD [47] is subtracted to serve as a new view to pur-

suit better performance. 
• COIL-20 dataset 3 : There are 20 object categories and 1440

generic object images with 32 × 32 pixels. Similar to [12] ,

we also extract three view features, including 1024-D intensity,

3304-D LBP, and 6750-D Gabor. 

The statistics of these datasets are summarized in Table 1 . 

.2. Compared methods and evaluation measures 

We compare GLTA with the following state-of-the-art methods,

ncluding SSC best 
4 [2] : single-view clustering via the l 1 -norm reg-

larized representation matrix construction; LRR best 
5 [3] : single-

iew clustering via the nuclear norm regularized representation

atrix construction; RSS best 
6 [30] : single-view clustering via si-

ultaneously learning data representations and their affinity ma-

rix; MLAP 

7 [25] : MVC by concatenating subspace representations

f different views and imposing low-rank constraint to explore the

omplementarity; DiMSC 

8 [19] : MVC with the Hilbert-Schmidt In-

ependence criterion; LT-MSC 

9 [11] : MVC with low-rank tensor

onstraint; MVCC 

10 [22] : MVC via concept factorization with local

anifold regularization; ECMSC 

11 [33] : exclusivity-consistency reg-

larized MVC; MLAN 

12 [48] : MVC with adaptive neighbors; t-SVD-
2 http://mlg.ucd.ie/datasets/3sources.html 
3 http://www.cs.columbia.edu/CAVE/software/softlib/ 
4 http://www.ccis.neu.edu/home/eelhami/codes.htm 

5 https://sites.google.com/site/guangcanliu/ 
6 https://sites.google.com/view/xjguo 
7 https://github.com/canyilu/LibADMM/tree/master/algorithms 
8 http://cs.tju.edu.cn/faculty/zhangchangqing/code.html 
9 http://cs.tju.edu.cn/faculty/zhangchangqing/code.html 

10 https://github.com/vast-wang/Clustering 
11 http://www.cbsr.ia.ac.cn/users/xiaobowang/codes/Demo _ ECMSC.zip 
12 http://www.escience.cn/people/fpnie/papers.html 

 

 

 

 

 

 

SC 

13 [12] : MVC via tensor multi-rank minimization; MLRSSC 

14 

4] : MVC via low-rank sparse subspace clustering; MSC _ IAS 15 [17] :

VC with intactness-aware similarity. The first three methods be-

ong to single-view clustering baselines while others belong to

ulti-view clustering ones. We choose these methods due to their

opularity and code availability. We also follow their experiment

ettings for fair comparison. Moreover, the deep feature is im-

osed on MITIndoor-67 dataset. We also compare the proposed

LTA with GSNMF-CNN [49] in Table 8 . For SSC best , LRR best , and

SS best , each feature is used independently and the best cluster-

ng result is reported. For a full comparison, we also perform SSC,

RR, and RSS with the joint view feature which is concatenated

y all features. They are denoted as SSC Con , LRR Con , and RSS Con ,

espectively. Since there exists one random parameter in MLAN,

e run MLAN 10 trials and report the best clustering result. For

iMSC, LT-MSC, t-SVD-MSC, MLRSSC, and MSC _ IAS, they all first

earn the representation matrix or tensor, and then construct the

ffinity matrix. For all methods except MLAN, the spectral cluster-

ng algorithm [16] is performed to obtain the clustering result. Our

revious conference paper [36] used the Tucker decomposition to

ncode the low-rank property, denoted as GLTA_Tucker. 

Following [11,12] , we exploit six popular clustering measures

50] , i.e. , accuracy (ACC), normalized mutual information (NMI), ad-

usted rank index (AR), F-score, Precision, and Recall, to evaluate

he clustering performance. One can refer to [12] for more details

f these six measures. Generally, the higher values these six mea-

ures have, the better the clustering quality is. Since the spectral

lustering is based on K-means for all methods and different ini-

ializations may yield different results, we run 10 trials for each

xperiment and report their average performance with standard

eviations. 

.3. Clustering performance comparison 

All clustering results on seven benchmark datasets are reported

n Tables 2–8 . The best results for each index are highlighted in

oldface and the second-best results are underlined. 

We reach the following observations from these experiment re-

ults: 

• In most cases, the performance of GLTA is better than or

comparable to those of all competing methods, especially on

BBC4View, Scene-15, MITIndoor-67, and COIL-20 datasets. GLTA

with t-SVD-NN outperforms GLTA_Tucker in all cases. This in-

dicates that the singular value decomposition-based tensor nu-

clear norm may be the better candidate for the low-rank prop-

erty of the representation tensor over the Tucker decomposi-

tion. The improvement of the proposed GLTA is around 16.7,

11.6, 19.6, 18.1, 22.7, and 12.9 percentage points with respect

to six measures over the second-best method t-SVD-MSC on

Scene-15 dataset, and around 23.8, 22.3, 36.1, 35.6, 34.9, and

36.3 percentage points on MITIndoor-67 dataset, respectively.

The main reason is that DiMSC, LT-MSC, t-SVD-MSC-MLRSSC,

and MSC _ IAS construct the representation matrix or tensor and

affinity matrix in two separate steps without the considera-

tion of the various contributions of different features. However,

the proposed GLTA learns the representation tensor and affinity

matrix in a synchronous way such that the high dependence

between them can be well exploited. More importantly, the

promising performance of GLTA also benefits from the preser-

vation of the local geometrical structures; 
13 https://www.researchgate.net/profile/Yuan _ Xie4/publications 
14 https://github.com/mbrbic/Multi- view- LRSSC 
15 http://www.cbsr.ia.ac.cn/users/xiaobowang/codes/MSC _ IAS _ Released.zip 

http://mlg.ucd.ie/datasets/3sources.html
http://www.cs.columbia.edu/CAVE/software/softlib/
http://www.ccis.neu.edu/home/eelhami/codes.htm
https://sites.google.com/site/guangcanliu/
https://sites.google.com/view/xjguo
https://github.com/canyilu/LibADMM/tree/master/algorithms
http://cs.tju.edu.cn/faculty/zhangchangqing/code.html
http://cs.tju.edu.cn/faculty/zhangchangqing/code.html
https://github.com/vast-wang/Clustering
http://www.cbsr.ia.ac.cn/users/xiaobowang/codes/Demo_ECMSC.zip
http://www.escience.cn/people/fpnie/papers.html
https://www.researchgate.net/profile/Yuan_Xie4/publications
https://github.com/mbrbic/Multi-view-LRSSC
http://www.cbsr.ia.ac.cn/users/xiaobowang/codes/MSC_IAS_Released.zip
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Table 2 

Clustering results (mean ± standard deviation) on BBC4view. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.660 ± 0.002 0.494 ± 0.005 0.470 ± 0.001 0.599 ± 0.001 0.578 ± 0.001 0.622 ± 0.001 

SSC Con 0.848 ± 0.001 0.667 ± 0.002 0.702 ± 0.002 0.770 ± 0.002 0.787 ± 0.002 0.754 ± 0.002 

LRR best 0.802 ± 0.000 0.568 ± 0.000 0.621 ± 0.000 0.712 ± 0.000 0.697 ± 0.000 0.727 ± 0.000 

LRR Con 0.804 ± 0.000 0.611 ± 0.000 0.609 ± 0.000 0.700 ± 0.000 0.710 ± 0.000 0.690 ± 0.000 

RSS best 0.837 ± 0.000 0.621 ± 0.000 0.665 ± 0.000 0.747 ± 0.000 0.720 ± 0.000 0.775 ± 0.000 

RSS Con 0.877 ± 0.001 0.738 ± 0.002 0.758 ± 0.002 0.812 ± 0.001 0.834 ± 0.001 0.792 ± 0.002 

MLAP 0.872 ± 0.000 0.725 ± 0.000 0.751 ± 0.000 0.808 ± 0.000 0.824 ± 0.000 0.793 ± 0.000 

DiMSC 0.892 ± 0.001 0.728 ± 0.002 0.752 ± 0.002 0.810 ± 0.002 0.811 ± 0.002 0.810 ± 0.002 

LT-MSC 0.591 ± 0.000 0.442 ± 0.005 0.400 ± 0.001 0.546 ± 0.000 0.525 ± 0.000 0.570 ± 0.001 

MVCC 0.745 ± 0.001 0.587 ± 0.001 0.550 ± 0.000 0.656 ± 0.001 0.654 ± 0.001 0.658 ± 0.000 

ECMSC 0.308 ± 0.028 0.047 ± 0.009 0.008 ± 0.018 0.322 ± 0.017 0.239 ± 0.009 0.497 ± 0.064 

MLAN 0.853 ± 0.007 0.698 ± 0.010 0.716 ± 0.005 0.783 ± 0.004 0.776 ± 0.003 0.790 ± 0.004 

t-SVD-MSC 0.858 ± 0.001 0.685 ± 0.002 0.725 ± 0.002 0.789 ± 0.001 0.800 ± 0.001 0.778 ± 0.002 

MLRSSC 0.888 ± 0.074 0.761 ± 0.036 0.788 ± 0.073 0.837 ± 0.056 0.845 ± 0.053 0.830 ± 0.061 

MSC _ IAS 0.820 ± 0.001 0.632 ± 0.001 0.647 ± 0.002 0.728 ± 0.001 0.741 ± 0.001 0.715 ± 0.002 

GLTA_Tucker 0.910 ± 0.000 0.771 ± 0.000 0.810 ± 0.000 0.854 ± 0.000 0.864 ± 0.000 0.845 ± 0.000 

GLTA 0.996 ± 0.000 0.983 ± 0.000 0.990 ± 0.000 0.993 ± 0.000 0.996 ± 0.000 0.990 ± 0.000 

Bold fonts denote the best performance; underlined ones represent the second-best results in all tables. 

Table 3 

Clustering results (mean ± standard deviation) on BBCSport. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.627 ± 0.003 0.534 ± 0.008 0.364 ± 0.007 0.565 ± 0.005 0.427 ± 0.004 0.834 ± 0.004 

SSC Con 0.666 ± 0.011 0.590 ± 0.024 0.440 ± 0.088 0.609 ± 0.046 0.494 ± 0.062 0.819 ± 0.061 

LRR best 0.836 ± 0.001 0.698 ± 0.002 0.705 ± 0.001 0.776 ± 0.001 0.768 ± 0.001 0.784 ± 0.001 

LRR Con 0.853 ± 0.000 0.738 ± 0.000 0.760 ± 0.000 0.818 ± 0.000 0.807 ± 0.000 0.830 ± 0.000 

RSS best 0.878 ± 0.000 0.714 ± 0.000 0.717 ± 0.000 0.784 ± 0.000 0.787 ± 0.000 0.782 ± 0.000 

RSS Con 0.870 ± 0.001 0.731 ± 0.001 0.758 ± 0.001 0.815 ± 0.001 0.822 ± 0.001 0.809 ± 0.001 

MLAP 0.868 ± 0.001 0.763 ± 0.003 0.791 ± 0.003 0.842 ± 0.002 0.827 ± 0.002 0.858 ± 0.003 

DiMSC 0.922 ± 0.000 0.785 ± 0.000 0.813 ± 0.000 0.858 ± 0.000 0.846 ± 0.000 0.872 ± 0.000 

LT-MSC 0.460 ± 0.046 0.222 ± 0.028 0.167 ± 0.043 0.428 ± 0.014 0.328 ± 0.028 0.629 ± 0.053 

MVCC 0.928 ± 0.000 0.816 ± 0.000 0.831 ± 0.000 0.870 ± 0.000 0.889 ± 0.000 0.853 ± 0.000 

ECMSC 0.285 ± 0.014 0.027 ± 0.013 0.009 ± 0.011 0.267 ± 0.020 0.244 ± 0.007 0.297 ± 0.045 

MLAN 0.721 ± 0.000 0.779 ± 0.000 0.591 ± 0.000 0.714 ± 0.000 0.567 ± 0.000 0.962 ± 0.000 

t-SVD-MSC 0.879 ± 0.000 0.765 ± 0.000 0.784 ± 0.000 0.834 ± 0.000 0.863 ± 0.000 0.807 ± 0.000 

MLRSSC 0.815 ± 0.020 0.681 ± 0.005 0.678 ± 0.007 0.753 ± 0.004 0.775 ± 0.015 0.732 ± 0.007 

MSC _ IAS 0.948 ± 0.000 0.854 ± 0.000 0.861 ± 0.000 0.894 ± 0.000 0.892 ± 0.000 0.897 ± 0.000 

GLTA_Tucker 0.939 ± 0.000 0.825 ± 0.000 0.849 ± 0.000 0.885 ± 0.000 0.890 ± 0.000 0.880 ± 0.000 

GLTA 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 

Table 4 

Clustering results (mean ± standard deviation) on 3Sources. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.762 ± 0.003 0.694 ± 0.003 0.658 ± 0.004 0.743 ± 0.003 0.769 ± 0.001 0.719 ± 0.005 

SSC Con 0.670 ± 0.006 0.632 ± 0.009 0.511 ± 0.009 0.643 ± 0.007 0.556 ± 0.004 0.762 ± 0.014 

LRR best 0.647 ± 0.033 0.542 ± 0.018 0.486 ± 0.028 0.608 ± 0.033 0.594 ± 0.031 0.636 ± 0.096 

LRR Con 0.607 ± 0.019 0.605 ± 0.016 0.440 ± 0.026 0.554 ± 0.021 0.635 ± 0.022 0.491 ± 0.019 

RSS best 0.722 ± 0.000 0.601 ± 0.000 0.533 ± 0.000 0.634 ± 0.000 0.679 ± 0.000 0.595 ± 0.000 

RSS Con 0.731 ± 0.007 0.693 ± 0.006 0.591 ± 0.013 0.678 ± 0.010 0.738 ± 0.016 0.627 ± 0.006 

MLAP 0.805 ± 0.000 0.756 ± 0.000 0.688 ± 0.000 0.762 ± 0.000 0.751 ± 0.000 0.773 ± 0.000 

DiMSC 0.795 ± 0.004 0.727 ± 0.010 0.661 ± 0.005 0.748 ± 0.004 0.711 ± 0.005 0.788 ± 0.003 

LT-MSC 0.781 ± 0.000 0.698 ± 0.003 0.651 ± 0.003 0.734 ± 0.002 0.716 ± 0.008 0.754 ± 0.005 

MVCC 0.761 ± 0.016 0.698 ± 0.016 0.626 ± 0.010 0.731 ± 0.008 0.607 ± 0.009 0.916 ± 0.008 

ECMSC 0.346 ± 0.025 0.132 ± 0.029 0.011 ± 0.031 0.295 ± 0.013 0.240 ± 0.019 0.391 ± 0.043 

MLAN 0.775 ± 0.015 0.676 ± 0.005 0.580 ± 0.008 0.666 ± 0.007 0.756 ± 0.003 0.594 ± 0.009 

t-SVD-MSC 0.781 ± 0.000 0.678 ± 0.000 0.658 ± 0.000 0.745 ± 0.000 0.683 ± 0.000 0.818 ± 0.000 

MLRSSC 0.697 ± 0.034 0.604 ± 0.012 0.562 ± 0.041 0.660 ± 0.030 0.690 ± 0.050 0.633 ± 0.025 

MSC _ IAS 0.797 ± 0.017 0.641 ± 0.009 0.576 ± 0.026 0.666 ± 0.022 0.729 ± 0.014 0.613 ± 0.028 

GLTA_Tucker 0.846 ± 0.000 0.728 ± 0.000 0.665 ± 0.000 0.736 ± 0.000 0.805 ± 0.000 0.678 ± 0.000 

GLTA 0.859 ± 0.008 0.753 ± 0.015 0.713 ± 0.014 0.775 ± 0.011 0.827 ± 0.009 0.730 ± 0.013 

 

 

 

 

 

 

 

 

 

 

 

 

 

• In general, multi-view clustering approaches achieve better

clustering performance than the single-view clustering ap-

proaches SSC best , LRR best , and RSS best . This is mainly because

single-view clustering methods focus on specific view feature

while the high-order cross information among multiple views

is well captured by these multi-view clustering approaches; 
• LT-MSC achieves unsatisfactory results on the first two datasets

which may come from the fact that the unfolding-based ten-
sor nuclear norm is a loose surrogate of Tucker rank. Moreover,

t-SVD-MSC has achieved better performance than LT-MSC. The

main reason is that t-SVD-TNN can better uncover the global

structure of the representation tensor than the unfolding-based

tensor nuclear norm; 
• MLAN performs worse than three single-view clustering meth-

ods on BBCSport and Scene-15 datasets. The main reason may
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Table 5 

Clustering results (mean ± standard deviation) on MSRC-V1. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.791 ± 0.007 0.750 ± 0.005 0.651 ± 0.006 0.701 ± 0.005 0.670 ± 0.008 0.736 ± 0.003 

SSC Con 0.762 ± 0.000 0.748 ± 0.002 0.658 ± 0.001 0.707 ± 0.002 0.673 ± 0.002 0.748 ± 0.001 

LRR best 0.695 ± 0.000 0.590 ± 0.000 0.491 ± 0.000 0.562 ± 0.000 0.560 ± 0.000 0.564 ± 0.002 

LRR Con 0.694 ± 0.004 0.553 ± 0.009 0.470 ± 0.007 0.545 ± 0.006 0.535 ± 0.006 0.556 ± 0.007 

RSS best 0.751 ± 0.002 0.634 ± 0.003 0.538 ± 0.004 0.604 ± 0.004 0.587 ± 0.004 0.621 ± 0.003 

RSS Con 0.801 ± 0.040 0.692 ± 0.030 0.625 ± 0.047 0.678 ± 0.041 0.670 ± 0.040 0.686 ± 0.041 

MLAP 0.857 ± 0.000 0.750 ± 0.000 0.704 ± 0.000 0.746 ± 0.000 0.741 ± 0.000 0.751 ± 0.000 

DiMSC 0.759 ± 0.009 0.622 ± 0.015 0.548 ± 0.015 0.611 ± 0.013 0.606 ± 0.013 0.616 ± 0.012 

LT-MSC 0.831 ± 0.003 0.743 ± 0.004 0.665 ± 0.004 0.712 ± 0.004 0.699 ± 0.004 0.725 ± 0.003 

MVCC 0.622 ± 0.018 0.588 ± 0.013 0.458 ± 0.015 0.538 ± 0.014 0.510 ± 0.012 0.569 ± 0.020 

ECMSC 0.795 ± 0.002 0.750 ± 0.002 0.681 ± 0.001 0.727 ± 0.001 0.705 ± 0.001 0.750 ± 0.001 

MLAN 0.859 ± 0.003 0.751 ± 0.003 0.709 ± 0.004 0.750 ± 0.003 0.727 ± 0.004 0.776 ± 0.002 

t-SVD-MSC 0.991 ± 0.000 0.982 ± 0.000 0.978 ± 0.000 0.981 ± 0.000 0.980 ± 0.000 0.982 ± 0.000 

MLRSSC 0.521 ± 0.051 0.411 ± 0.041 0.285 ± 0.052 0.386 ± 0.044 0.379 ± 0.045 0.392 ± 0.042 

MSC _ IAS 0.909 ± 0.000 0.844 ± 0.000 0.802 ± 0.000 0.830 ± 0.000 0.820 ± 0.000 0.840 ± 0.000 

GLTA_Tucker 0.878 ± 0.006 0.783 ± 0.009 0.737 ± 0.010 0.774 ± 0.010 0.763 ± 0.000 0.785 ± 0.009 

GLTA 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 

Table 6 

Clustering results (mean ± standard deviation) on COIL-20. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.803 ± 0.022 0.935 ± 0.009 0.798 ± 0.022 0.809 ± 0.013 0.734 ± 0.027 0.804 ± 0.028 

SSC Con 0.851 ± 0.000 0.960 ± 0.000 0.833 ± 0.000 0.843 ± 0.000 0.757 ± 0.000 0.949 ± 0.000 

LRR best 0.761 ± 0.003 0.829 ± 0.006 0.720 ± 0.020 0.734 ± 0.006 0.717 ± 0.003 0.751 ± 0.002 

LRR Con 0.766 ± 0.020 0.866 ± 0.008 0.722 ± 0.013 0.737 ± 0.012 0.694 ± 0.024 0.787 ± 0.016 

RSS best 0.837 ± 0.012 0.930 ± 0.006 0.789 ± 0.005 0.800 ± 0.005 0.717 ± 0.012 0.897 ± 0.017 

RSS Con 0.757 ± 0.011 0.836 ± 0.008 0.711 ± 0.016 0.725 ± 0.016 0.717 ± 0.016 0.732 ± 0.015 

MLAP 0.738 ± 0.020 0.825 ± 0.009 0.685 ± 0.023 0.701 ± 0.021 0.688 ± 0.027 0.715 ± 0.016 

DiMSC 0.778 ± 0.022 0.846 ± 0.002 0.732 ± 0.005 0.745 ± 0.005 0.739 ± 0.007 0.751 ± 0.003 

LT-MSC 0.804 ± 0.011 0.860 ± 0.002 0.748 ± 0.004 0.760 ± 0.007 0.741 ± 0.009 0.776 ± 0.006 

MVCC 0.732 ± 0.018 0.845 ± 0.007 0.675 ± 0.022 0.692 ± 0.021 0.647 ± 0.034 0.744 ± 0.013 

ECMSC 0.782 ± 0.001 0.942 ± 0.001 0.781 ± 0.001 0.794 ± 0.001 0.695 ± 0.002 0.925 ± 0.001 

MLAN 0.862 ± 0.011 0.961 ± 0.004 0.835 ± 0.006 0.844 ± 0.013 0.758 ± 0.008 0.953 ± 0.007 

t-SVD-MSC 0.830 ± 0.000 0.884 ± 0.005 0.786 ± 0.003 0.800 ± 0.004 0.785 ± 0.007 0.808 ± 0.001 

MLRSSC 0.859 ± 0.007 0.960 ± 0.001 0.835 ± 0.004 0.843 ± 0.003 0.758 ± 0.001 0.952 ± 0.007 

MSC _ IAS 0.845 ± 0.009 0.958 ± 0.005 0.849 ± 0.010 0.839 ± 0.012 0.803 ± 0.008 0.910 ± 0.006 

GLTA_Tucker 0.878 ± 0.008 0.945 ± 0.001 0.869 ± 0.007 0.875 ± 0.007 0.856 ± 0.013 0.895 ± 0.001 

GLTA 0.903 ± 0.006 0.946 ± 0.001 0.891 ± 0.007 0.897 ± 0.006 0.893 ± 0.013 0.900 ± 0.001 

Table 7 

Clustering results (mean ± standard deviation) on Scene-15. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.444 ± 0.003 0.470 ± 0.002 0.279 ± 0.001 0.337 ± 0.002 0.292 ± 0.001 0.397 ± 0.001 

SSC Con 0.436 ± 0.010 0.527 ± 0.003 0.317 ± 0.008 0.371 ± 0.007 0.324 ± 0.009 0.434 ± 0.013 

LRR best 0.445 ± 0.013 0.426 ± 0.018 0.272 ± 0.015 0.324 ± 0.010 0.316 ± 0.015 0.333 ± 0.015 

LRR Con 0.523 ± 0.001 0.532 ± 0.001 0.375 ± 0.002 0.418 ± 0.002 0.419 ± 0.001 0.418 ± 0.002 

RSS best 0.468 ± 0.008 0.441 ± 0.003 0.310 ± 0.004 0.357 ± 0.003 0.358 ± 0.003 0.356 ± 0.004 

MLAP 0.568 ± 0.005 0.563 ± 0.002 0.405 ± 0.002 0.447 ± 0.002 0.439 ± 0.001 0.455 ± 0.003 

DiMSC 0.300 ± 0.010 0.269 ± 0.009 0.117 ± 0.012 0.181 ± 0.010 0.173 ± 0.016 0.190 ± 0.010 

LT-MSC 0.574 ± 0.009 0.571 ± 0.011 0.424 ± 0.010 0.465 ± 0.007 0.452 ± 0.003 0.479 ± 0.008 

MVCC 0.469 ± 0.001 0.496 ± 0.002 0.318 ± 0.002 0.369 ± 0.001 0.342 ± 0.002 0.400 ± 0.001 

ECMSC 0.457 ± 0.001 0.463 ± 0.002 0.303 ± 0.001 0.357 ± 0.001 0.318 ± 0.001 0.408 ± 0.001 

MLAN 0.332 ± 0.000 0.475 ± 0.000 0.151 ± 0.000 0.248 ± 0.000 0.150 ± 0.000 0.731 ± 0.000 

t-SVD-MSC 0.812 ± 0.007 0.858 ± 0.007 0.771 ± 0.003 0.788 ± 0.001 0.743 ± 0.006 0.839 ± 0.003 

MLRSSC 0.484 ± 0.026 0.463 ± 0.011 0.313 ± 0.015 0.362 ± 0.014 0.355 ± 0.015 0.368 ± 0.013 

MSC _ IAS 0.583 ± 0.003 0.603 ± 0.003 0.429 ± 0.006 0.472 ± 0.006 0.438 ± 0.009 0.512 ± 0.013 

GLTA 0.979 ± 0.027 0.974 ± 0.007 0.967 ± 0.022 0.969 ± 0.020 0.970 ± 0.024 0.968 ± 0.017 
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be that MLAN learns the affinity matrix directly from the raw

data that may contain noise and outliers; 
• The low-rank matrix-based multi-view subspace clustering

methods, i.e. , MLRSSC and MSC _ IAS have unstable performance.

For example, they outperform almost competing methods on

BBC4view, BBCSport and COIL-20 datasets but achieve worse

performance than SSC and LRR on MITIndoor-67 dataset. 

In summary, these experiment results indicate that learning the

epresentation tensor and affinity matrix in a synchronous way has

he potential to the improvement of the clustering performance. 
.4. Model analysis 

In this section, we aim to present a comprehensive study of the

roposed GLTA. We first analyze the parameter sensitivity and em-

irical convergence, and then explain why the proposed GLTA can

btain superiority over all competing methods. 

(1) Parameter selection: We set the number of the nearest

eighbors as 5 and γ =10 for all experiments. Here, we investigate

ow to tune parameters in the proposed GLTA. Three free parame-

ers λ1 , λ2 , and λ3 in GLTA should be tuned. Specifically, they are
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Table 8 

Clustering results (mean ± standard deviation) on MITIndoor-67. 

Method ACC NMI AR F-score Precision Recall 

SSC best 0.475 ± 0.008 0.615 ± 0.003 0.332 ± 0.006 0.343 ± 0.006 0.314 ± 0.007 0.377 ± 0.007 

SSC Con 0.411 ± 0.009 0.528 ± 0.003 0.258 ± 0.005 0.270 ± 0.005 0.255 ± 0.007 0.286 ± 0.005 

LRR best 0.120 ± 0.004 0.226 ± 0.006 0.031 ± 0.007 0.045 ± 0.004 0.044 ± 0.006 0.047 ± 0.004 

LRR Con 0.358 ± 0.010 0.492 ± 0.004 0.223 ± 0.005 0.234 ± 0.005 0.230 ± 0.005 0.239 ± 0.004 

RSS best 0.490 ± 0.013 0.603 ± 0.005 0.338 ± 0.008 0.348 ± 0.008 0.337 ± 0.008 0.359 ± 0.008 

DiMSC 0.246 ± 0.000 0.383 ± 0.003 0.128 ± 0.005 0.141 ± 0.004 0.138 ± 0.001 0.144 ± 0.002 

LT-MSC 0.431 ± 0.002 0.546 ± 0.004 0.280 ± 0.008 0.290 ± 0.002 0.279 ± 0.006 0.306 ± 0.005 

ECMSC 0.353 ± 0.002 0.489 ± 0.001 0.216 ± 0.002 0.228 ± 0.001 0.213 ± 0.001 0.247 ± 0.002 

MLAN 0.468 ± 0.010 0.611 ± 0.003 0.312 ± 0.006 0.323 ± 0.006 0.299 ± 0.008 0.352 ± 0.003 

GSNMF-CNN 0.517 ± 0.003 0.673 ± 0.003 0.264 ± 0.005 0.372 ± 0.002 0.367 ± 0.004 0.381 ± 0.001 

t-SVD-MSC 0.684 ± 0.005 0.750 ± 0.007 0.555 ± 0.005 0.562 ± 0.008 0.543 ± 0.005 0.582 ± 0.004 

MSC _ IAS 0.333 ± 0.006 0.466 ± 0.002 0.176 ± 0.004 0.189 ± 0.004 0.174 ± 0.004 0.207 ± 0.004 

GLTA 0.922 ± 0.014 0.973 ± 0.004 0.916 ± 0.004 0.918 ± 0.013 0.892 ± 0.018 0.945 ± 0.009 

MLRSSC runs out of memory in current platform. 

Table 9 

Comparison among different view features by SSC [2] and LRR [3] . 

Dataset SSC (ACC/NMI) LRR (ACC/NMI) 

View 1 View 2 View 3 View 4 View 1 View 2 View 3 View 4 

BBC4view 0.660/0.494 0.414/0.238 0.542/0.259 0.415/0.236 0.802/0.568 0.769/0.525 0.791/0.550 0.740/0.497 

3Sources 0.661/0.568 0.762/0.694 0.695/0.632 0.580/0.516 0.647/0.542 0.618/0.511 

BBCSport 0.589/0.534 0.627/0.534 0.836/0.698 0.816/0.630 

Table 10 

Comparison of GLTA and its variants (ACC/NMI). 

ACC/NMI 

BBC4view BBCSport 3Sources MSRC-V1 Scene15 COIL-20 Average 

GLTA 0.996/0.983 1.000/1.000 0.859/0.753 1.000/1.000 0.979/0.974 0.903/0.946 0.9562/0.9427 

GLTA-p1 0.972/0.909 0.959/0.905 0.749/0.720 0.879/0.828 0.912/0.918 0.891/0.940 0.8937/0.8700 

GLTA-p2 0.417/0.371 0.998/0.994 0.291/0.083 1.000/1.000 0.885/0.889 0.835/0.905 0.7377/0.7070 

Table 11 

Complexity and average running time on all datasets (in seconds). 

Data MLAP DiMSC LT-MSC MLAN t-SVD-MSC MLRSSC MSC_IAS GLTA 

Complexity O(T n 3 ) O(T V n 3 ) O(T V n 3 ) O(dn 2 + Tcn 2 ) O 

(
T V n 2 log (n ) 

)
O(T V n 3 ) O(T n 3 ) O 

(
T V 

(
n 3 + n 2 log(n ) 

))
BBC4view 555.41 207.21 335.51 2.76 97.99 15.59 6.25 192.45 

BBCSport 159.65 38.15 77.23 1.89 19.59 6.51 15.16 54.63 

3Sources 43.03 4.89 23.45 1.01 8.72 2.59 3.47 10.24 

MSRC-V1 29.37 4.73 20.15 1.44 5.96 1.12 3.39 11.12 

COIL-20 1826.51 617.29 874.91 31.03 169.10 34.52 41.55 1689.22 

Scene-15 13825.53 12449.36 7705.87 3318.62 3429.46 3592.46 185.45 16744.69 

MITIndoor-67 33851.14 31254.21 20834.12 429.74 3404.86 - 254.89 25332.23 

Table 12 

Average running time on BBC4view with different value combinations (in seconds). 

( λ1 , λ2 , λ3 ) (0.005,0.01,0.1) (0.005,0.01,10) (0.005,0.1,0.1) (0.005,0.1,10) 

Time 195.49 192.45 195.10 187.24 

Iteration 46 45 46 44 

( λ1 , λ2 , λ3 ) (0.1,0.01,0.1) (0.1,0.01,10) (0.1,0.1,0.1) (0.1,0.1,10) 

Time 165.84 162.22 172.12 171.21 

Iteration 38 38 39 39 
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X  
empirically selected from the sets of [0.0 01, 0.0 05, 0.01, 0.05, 0.1,

0.2, 0.4, 0.5], [0.0 01, 0.0 05, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2, 5, 10,

50, 10 0, 50 0], and [0.01,0.1,0.5,1,3,5,7,10,50,100], respectively. Due to

page limitation, we only show the ACC values of our GLTA with

different combinations of λ1 , λ2 , and λ3 on BBCSport and MSRC-

1 datasets in Fig. 4 . It is well known that the error term may

have less importance for the objective function [3] . Inspired by this

observation, we first fix λ1 as a relative small constant, and then

perform GLTA with different combinations of λ2 and λ3 as shown

in the left figures of Fig. 4 . We can see that GLTA is not sensitive
o parameter λ2 and λ3 . Finally, we fix λ2 and λ3 , and perform

LTA to investigate the influence of λ1 . We can see that when λ1 is

mall, GLTA can yield promising results. Overall, the recommended

arameters of GLTA are that λ1 , λ2 , and λ3 can select from the

nterval [0.005, 0.2], [0.05,0.2], and [0.01,1], respectively. 

(2) Convergence analysis: It is intractable to derive the theoret-

cal convergence proof of the proposed GLTA. Instead, we provide

he empirical convergence analysis on four datasets in Fig. 5 (a),

n which the vertical axis denotes the error defined as 
∑ 

v ‖ X (v ) −
 

(v ) Y (v ) 
∗ − E (v ) 

∗‖ F / ∑ 

v ‖ X (v ) ‖ F . After 15 iterations, the error yields
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Fig. 4. ACC values of GLTA with different combinations of λ2 and λ3 by fixing λ1 on (a) BBCSport and (b) MSRC-V1 datasets. 

Fig. 5. (a) Empirical convergence versus iterations; (b) ACC and NMI versus iterations. 
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 stable value. This means that GLTA can converge within a few

terations. We also report the ACC and NMI values with each iter-

tion in Fig. 5 (b), since they can reflect the clustering performance

o some extent. We can see that when the number of iterations in-

reases, ACC and NMI values consistently increase until approach-

ng the best values. This indicates indirectly that GLTA is conver-

ent on these real datasets. 

(3) The necessity of the feature weight: The clustering re-

ults by SSC [2] and LRR [3] on each view feature are reported

n Table 9 . We can see that for the same dataset, different fea-

ures may yield various clustering results. For example, the values

f ACC and NMI on BBC4view by SSC vary from 41.4 to 66.0 and

3.6 to 49.4 percentage points, respectively. For 3Sources, differ-

nces among three views by SSC with respect to ACC and NMI

re 10.1 and 12.6 percentage points, respectively. In addition, on

Sources and MSRC-v1 datasets, SSC Con and LRR Con perform worse

han SSC and LRR. Therefore, we can draw a conclusion that differ-

nt features have various contributions to clustering results. This

s one of the fundamental motivations of this paper. Thus, it is of
ital importance to fully consider the different contributions of dif-

erent features in the multi-view clustering procedure. 

(4) Ablation study: 

In this section, we aim to investigate the ablation study of GLTA

ncluding the roles of local structures and the scheme of simul-

aneously learning the representation tensor and affinity matrix.

rom all above experimental results, we can see that only consid-

ring the low-rank tensor representation (such as, LT-MSC and t-

VD-MSC) or the local structures (such as, MLAN) cannot achieve

atisfactory performance. In addition, existing methods, including

iMSC, LT-MSC, and t-SVD-MSC, learn the representation tensor,

nd then construct the affinity matrix. They fail to consider the

arious contributions of different features and the dependence be-

ween features. To address these issues, the proposed GLTA im-

roves existing methods in two phases: (1) GLTA learns the rep-

esentation tensor and affinity matrix simultaneously; (2) GLTA in-

orporates the local geometrical structures into one unified frame-

ork. To investigate the contributions of these above two fac-

ors individually, we conduct experiments by performing two tests.
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Specifically, the first test sets λ2 , λ3 = 0 and tunes other parame-

ters, while the second test fixes λ3 = 0 . 

The first test, denoted as GLTA-p1, sets parameters λ2 , λ3 to

zero to verify the contribution of Phase (1). In GLTA-p1, Z and

S are learned simultaneously while the local structures are miss-

ing. The second test, called GLTA-p2, sets parameter λ3 to zero

to investigate the contribution of Phase (2). These two tests are

performed on the BBC4view, BBCSport, 3Sources, MSRC-V1, Scene-

15, and COIL-20 databases. The clustering results of GLTA, GLTA-

p1, and GLTA-p2 are reported in Table 10 . As can be seen, GLTA

has achieved superior performance to GLTA-p1 and GLTA-p2 in all

cases. In average, GLTA improves GLTA-p1 and GLTA-p2 at 21.85

and 6.25 percentage points with respect to the ACC value and at

23.57 and 7.27 percentage points in terms of the NMI value. These

results directly verify that the superiority of GLTA, and indicate

that constructing the representation tensor and affinity matrix in

a synchronous way and preserving the local geometrical structures

can significantly boost the clustering performance. 

(5) Comparison of running time: The average running time

of different multi-view clustering methods is shown in Table 11 .

All experiments are implemented in Matlab 2016a on a work-

station with 3.50GHz CPU and 16GB RAM. MLAN and MSC_IAS

have the shortest processing time among all methods, especially

when handling the large-scale datasets. MLAP and DiMSC have the

running time comparable with the proposed GLTA. The low-rank

tensor-based multi-view clustering methods (including LT-MSC, t-

SVD-MSC, and the proposed GLTA) have high computation cost

while they have achieved better performance than other compet-

ing methods. The underlying reason is that LT-MSC, t-SVD-MSC,

and GLTA find the correlation of the representation matrices in

a global view via the low-rank tensor approximation. The main

shortcoming of the proposed GLTA is the high computation com-

plexity. There are two possible approaches to address this issue.

Following [13] , the first approach is to learn a flexible affinity ma-

trix that may avoid solving a Sylvester equation. Using the ten-

sor factorization strategy [51] , the second one is to factorize the

representation tensor into the product of two tensors with small

sizes. This approach needs only matrix multiplications and does

not compute the tensor singular value decomposition. Our future

work will investigate how to use these two approaches to develop

efficient and effective multi-view clustering methods ( Table 12 ). 

To further investigate the computational complexity of the pro-

posed GLTA, we conduct experiments on BBC4view with different

combinations of ( λ1 , λ2 , λ3 ). The results are shown in Table 12 .

We can see that different settings of parameters ( λ1 , λ2 , λ3 ) may

slightly influence on the running time of GLTA. 

6. Conclusion 

In this paper, we developed a novel method for multi-view sub-

space clustering by learning graph regularized low-rank represen-

tation tensor and affinity matrix (GLTA) in a unified framework.

GLTA can learn the low-rank representation tensor and affinity ma-

trix simultaneously. The representation tensor is encoded by the t-

SVD-based tensor nuclear norm and the local manifolds while the

affinity matrix is constructed by assigning different weights to dif-

ferent view features. Extensive experiments on seven challenging

datasets demonstrated that our GLTA outperforms the state-of-the-

arts. 

For the future exploration, the first direction is how to integrate

the spectral clustering into the low-rank tensor representation-

based methods to learn the common indicator matrix. The second

one is, in some real applications like webpage clustering and dis-

ease diagnosing, some samples of different views may be missing.

Thus, it is natural to consider how to extend the proposed method

for incomplete multi-view clustering. The last one is to develop
ulti-view clustering methods with an unknown number of clus-

ers. 
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