Pattern Recognition 106 (2020) 107441

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Multi-view subspace clustering via simultaneously learning the )
representation tensor and affinity matrix G

Yongyong Chen?, Xiaolin Xiao®, Yicong Zhou®*

2 Department of Computer and Information Science, University of Macau, Macau 999078, China
b School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China.

ARTICLE INFO

ABSTRACT

Article history:

Received 27 June 2019
Revised 1 March 2020
Accepted 7 May 2020
Available online 16 May 2020

Keywords:

Multi-view subspace clustering
Low-rank tensor representation
Tensor-singular value decomposition
Adaptive weights

Local manifold

Multi-view subspace clustering aims at separating data points into multiple underlying subspaces accord-
ing to their multi-view features. Existing low-rank tensor representation-based multi-view subspace clus-
tering algorithms are robust to noise and can preserve the high-order correlations of multi-view features.
However, they may suffer from two common problems: (1) the local structures and different importance
of each view feature are often neglected; (2) the low-rank representation tensor and affinity matrix are
learned separately. To address these issues, we propose a unified framework to learn the Graph regu-
larized Low-rank representation Tensor and Affinity matrix (GLTA) for multi-view subspace clustering.
In the proposed GLTA framework, the tensor singular value decomposition-based tensor nuclear norm
is adopted to explore the high-order cross-view correlations. The manifold regularization is exploited to
preserve the local structures embedded in high-dimensional space. The importance of different features
is automatically measured when constructing the final affinity matrix. An iterative algorithm is developed
to solve GLTA using the alternating direction method of multipliers. Extensive experiments on seven chal-

lenging datasets demonstrate the superiority of GLTA over the state-of-the-art methods.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Subspace clustering [1] has gained increasing attention in pat-
tern recognition and machine learning communities [2-4]. Accord-
ing to the available sources, subspace clustering methods can be
roughly grouped into two categories: single-view subspace cluster-
ing and multi-view subspace clustering.

Single-view subspace clustering: Single-view subspace cluster-
ing is the clustering of data points into multiple subspaces while
finding a low-dimensional subspace to fit each group of data points
[2]. Sparse subspace clustering (SSC) [2] and low-rank represen-
tation (LRR) [3] are two representative works of single-view sub-
space clustering. Many variants of SSC and LRR have been proposed
[5,6]. However, these methods perform the clustering task using
only single-view feature and fail to explore the correlation among
the features of different sources.

Multi-view subspace clustering: “Feature” refers to “an indi-
vidual measurable property or characteristic of an object”. For ex-
ample, three typical features of images are color, textures, and
edges. “View” usually refers to the sources of feature acquisition
or the perspectives of feature estimation. For example, views may
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refer to Local Binary Pattern (LBP), Gabor, and Histogram of Ori-
ented Gradients (HOG). In real applications, the data characteris-
tics can be modeled from different views (or sources). For exam-
ple, documents can be translated into different languages for nat-
ural language processing; for action recognition, action sequences
may be captured by RGB, depth, and skeleton sensors. An intuitive
example of multi-view features is shown in Fig. 1(b). The features
from different views are complementary to each other since each
view usually characterizes partial knowledge of the original ob-
ject or data. This is the reason why multi-view clustering meth-
ods would achieve better performance than single-view cluster-
ing ones. For single-view clustering methods, there are two ways
to handle multi-view features. They perform single-view cluster-
ing methods either on each feature individually, or on the con-
catenated features. However, these above two schemes may fail to
make full use of the correlation among multiple features. Multi-
view subspaces refer to multiple subspaces with multi-view fea-
tures for a set of data points. Considering that a set of data points
are usually drawn from a union of several subspaces, multi-view
subspace clustering refers to the problem of separating data into
multiple underlying subspaces according to their multi-view fea-
tures. The main difference between the single-view subspace clus-
tering and multi-view subspace clustering is that the former ob-
tains the clustering results using the single feature while the later
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Fig. 1. The flowchart of the proposed GLTA. Multi-view features (b) are extracted from (a) original images. Unlike those existing multi-view clustering methods which learn
the representation tensor (d) and affinity matrix (e) in two separate steps, the proposed GLTA not only learns (d) and (e) simultaneously, but also takes the local structures

(c) into consideration in a unified manner.

uses multiple complementary features for clustering. Therefore, it
is of vital importance to design efficient methods to learn the un-
derlying intrinsic information hidden in different views for improv-
ing clustering performance.

Considerable efforts have been made to develop efficient multi-
view clustering (MVC) algorithms, such as the multi-view k-
means clustering [7], co-regularized MVC [8], canonical correlation
analysis-based clustering [9], and low-rank representation-based
MVC [10-14]. Due to the high efficiency and excellent performance,
the low-rank representation-based multi-view subspace clustering
has become the mainstream [12,13]. Generally, the procedures of
these methods can be roughly divided into three steps: Step 1:
learn the representation matrix or tensor using different subspace
learning approaches, such as SSC [2], LRR [3], and others [11,12,15];
Step 2: construct the affinity matrix by averaging all representa-
tion matrices, where the affinity matrix (also called similarity ma-
trix) aims at measuring the similarity between two data points;
Step 3: obtain the clustering results using the spectral clustering
algorithm [16] with the affinity matrix. The core of clustering is
to construct an informative affinity matrix. This is mainly because
the clustering performance highly depends on the affinity matrix.
Many works focus on how to directly learn a well-designed repre-
sentation matrix or tensor for the construction of the affinity ma-
trix. For example, Maria et al. [4] proposed to learn a low-rank and
sparse representation matrix. Wang et al. [17] used the intact space
learning technique to learn an informative intactness-aware repre-
sentation matrix. Zhu et al. [18] developed a structured multi-view
subspace clustering method to learn general and specific represen-
tation matrices. The representation tensor was encoded either by
the tensor nuclear norm [11,12] or by the diversity of all represen-
tations [19].

Although the above low-rank matrix or tensor representation-
based MVC methods have achieved satisfactory performance, they
still suffer from the following limitations: (1) they often ignore
the local structures as shown in Fig. 1(c). The methods in [4,10-
13,17,18] extend the (tensor) robust principal component analysis
or (tensor) LRR [3,20,21] for multi-view subspace clustering by
considering only the global low-rank property of the representa-
tion matrix or tensor. Thus, the locality and similarity information
of samples may be ignored in the learning processes [22,23]; (2)
they separately learn the low-rank representation and the affinity
matrix. To obtain the clustering results, the methods in [11,12] first
pursue the representation tensor in Step 1 by using different tensor
rank approximations and then construct the final affinity matrix
in Step 2 by averaging all representation matrices. In such a way,
two critical factors in clustering, i.e., the representation tensor and
affinity matrix, are learned separately. This would ignore the high
dependence between them. Thus, there is no guarantee of recov-

ering an overall optimal clustering result. Meanwhile, the existing
scheme of constructing the affinity matrix treats the representa-
tion matrices of different views equally. This may lead to unsatis-
factory performance in real applications. It is mainly because dif-
ferent features characterize specific and partly independent infor-
mation of the data and thus may have different contributions for
the final clustering results [24]. An intuitive example is reported
in Table 9 in Section 5.3. We can see that the clustering results of
different views vary.

Such two concerns are not well solved in existing low-rank
tensor representation-based MVC methods. In this paper, we pro-
pose a novel multi-view subspace clustering method by learning
the Graph regularized Low-rank representation Tensor and Affinity
matrix (GLTA) in a unified framework as shown in Fig. 1. Given
the multi-view features as shown in Fig. 1(b), the representation
tensor (Fig. 1(d)) and the affinity matrix (Fig. 1(e)) are learned si-
multaneously. Considering the fact that different view features may
have various contributions to the clustering performance, GLTA
can automatically assign corresponding weight to each view by
a constrained quadratic programming. Meanwhile, the local struc-
tures as shown in Fig. 1(c) are also preserved in the construction
of the representation tensor. Therefore, the main purpose of this
manuscript is to propose an efficient multi-view subspace cluster-
ing method not only to learn the low-rank representation tensor
and affinity matrix simultaneously, but also to integrate the local
structures into a unified manner. In such a way, the global and
local structures of multi-view features can be well explored. The
main contributions of this work are summarized as follows.

o Different from the existing low-rank representation-based MVC
which learns the representation matrix/tensor and affinity ma-
trix in a sequential way, the proposed GLTA not only learns the
representation tensor and affinity matrix simultaneously, but
also considers the local structures and the various contributions
of multi-view features.

GLTA exploits the tensor singular value decomposition-based
tensor nuclear norm to encode the low-rank property, adopts
the manifold regularization to depict the local structures,
and adaptively assigns various weights for multi-view features
when constructing the final affinity matrix. In this way, the
high-order correlations among different views and the local
structures can be explicitly captured.

An iterative algorithm is developed to solve GLTA using the al-
ternating direction method of multipliers. Extensive experiment
evaluations on seven challenging datasets demonstrate that
GLTA outperforms the state-of-the-art clustering approaches.

The remaining of this paper is structured as follows.
Section 2 briefly reviews related works on single-view and
multi-view subspace clustering. Section 3 discusses the math-



Y. Chen, X. Xiao and Y. Zhou /Pattern Recognition 106 (2020) 107441 3

ematical background. In Section 4, we introduce the proposed
method for multi-view subspace clustering and design an iterative
algorithm. We evaluate the performance of the proposed method
in Section 5 and conclude the whole paper in Section 6.

2. Related work

In this section, we briefly review several popular single-view
and multi-view subspace clustering methods based on low-rank
matrix or tensor approximation.

2.1. Single-view subspace clustering

Under the basic assumption that the observed data points
are generally drawn from low-dimensional subspaces, the popular
methods for single-view subspace clustering can be generally for-
mulated as follows:

nzliEn\P(Z)+kgo(E) st. X=XZ+E, diag(Z) =0, (1)

where X € RY*" is the feature matrix with n samples and d-
dimension feature. W(Z) is the regularization which imposes de-
sired property on the representation matrix Z € R™". ¢(E) is to
remove noise E. A > 0 is a trade-off parameter. The main differ-
ence among works in [2,3,15] is how to choose W. For instance,
SSC minimizes the [;-norm [2] on Z to learn the local structure of
data, while LRR [3] enforces the low-rank constraint on Z to cap-
ture the global structure. Least squares regression (LSR) [15] ex-
ploits the Frobenius-norm to model both Z and E.

Subspace clustering methods have achieved great success in
various applications including face and scene image clustering
[3], motion segmentation [3,25], object detection [26], commu-
nity clustering in social networks [27], biclustering [28] and so on.
For more information of subspace clustering, please refer to [1,29].
Since these methods assumed that the data lie in multiple linear
subspaces, they may not be able to handle the nonlinear data. On
the other hand, for multi-view data, especially the heterogeneous
features, LRR, SSC, LSR and their variants [5,23,30] may cause a
significant performance degradation [11,12,19] since they focus on
single-view feature. Thus they cannot deal with the multi-view
clustering task.

2.2. Multi-view subspace clustering

To tackle the above problem, multi-view subspace cluster-
ing [11,12,19,22,31-33] takes advantages of multi-view features to
boost the clustering performance, and has shown superiority over
its single-view counterpart [12]. Most of existing multi-view sub-
space clustering methods can be summarized as

v
i @) W)
Z{WTI,IEI?V) ; (") + }»(P(E ) s.t.

X0 =xWzW L EO digg(zW) =0, v=1,2,---,V), (2)

where X(V) denotes the vth feature matrix, its corresponding rep-
resentation matrix is denoted as Z) ¢ R™". d, is the dimension
of a sample vector in the vth feature matrix, n and V are the
numbers of data points and views, respectively. Similar to Eq. (1),
the studies in [4,11-13,18] used different regularizers to obtain dif-
ferent characteristics. For example, works in [4,18] used the nu-
clear norm and l; norm to preserve the consistency and diver-
sity. Zhang et al. [11] exploited the unfolding-based tensor nuclear
norm and [; norm to capture the high-order correlations. How-
ever, it may yield unsatisfactory performance in real applications,
since the unfolding-based tensor nuclear norm is a loose approxi-
mation of Tucker rank [20,21,34]. To deal with this issue, a newly

proposed tensor nuclear norm [20] was exploited in [12] to en-
sure the consensus among multiple views. The work in [35] pro-
posed to learn the latent representation to overcome the noise
interference. As previously mentioned, one essential limitation of
these low-rank tensor representation-based MVC methods is that
the representation tensor and affinity matrix are learned in a sep-
arate way.

This paper is an extension of our conference work [36]. In [36],
we used Tucker decomposition to encode the low-rank property
of the representation tensor. Due to the difficulty of the desired
rank of Tucker decomposition, we utilize the tensor singular value
decomposition-based tensor nuclear norm instead of the Tucker
decomposition in this paper.

3. Preliminaries

Before further discussions, we introduce the fundamental for-
mulas used in the paper and the tensor singular value decompo-
sition (t-SVD)-based tensor nuclear norm (see Definition 3.3). For
details of tensor and its applications, please see [37].

Following [37], calligraphy letters, capital letters, and lower-
case letters (e.g., X, X, x) denote tensors, matrices, and vectors,
respectively. The inner product of X and Y in RNi*N2xNs s de-
fined as (X,Y) =vec(X)Tvec()), and the Frobenius norm of X
is defined as ||X||F = v/ (X, X). Operator vec(X) is to stacking all
columns of the matrix X into a vector. We denote the /;-norm of
X as ||X|l; = |lvec(X)|l; and the infinity norm of & as || X ||« =
max; ;i | (i, j, k)|. The kth frontal slice of tensor X is denoted as
x®_ Performing the fast Fourier transformation (FFT) along the
tube fibers of X is denoted as X = fft(X, [], 3). Likewise, we can
obtain X from X by the inverse FFT, ie., 2" =ifft(?,[], 3).

We first introduce several block operators which are the foun-
dation of t-SVD [20,38]. For a tensor X e RNM*MaxN3 " jts block cir-
cular matrix becirc(X') and block diagonal matrix bdiag(X) are de-
fined as

m x M X (N3) e X®
x®@ M e x®
bcirc(X) = . . . R
M) pe-D L ()
(D
x®@
bdiag(x) =
(N2

The block vectorization is defined as bvec(x) = [x(D; ... ; x(N3)],
The inverse operations of bvec and bdiag are defined as
bvfold(bvec(X')) = X and bdfold(bdiag(X)) = X, respectively. Let
Y e RN2NaMs3  The t-product X « ) is an Ny x N4y x N3 tensor,

X x Y = bvfold(bcirc(X) = bvec())).

The transpose of X is XT ¢ RN2xNixNs by transposing each of the
frontal slices and then reversing the order of transposed frontal
slices 2 through Nj. The identity tensorZ ¢ RN >*N1*Ns s 3 tensor
whose first frontal slice is an N; x N; identity matrix and the re-
maining frontal slices are zero. A tensor X € RNi*NixNs is orthog-
onal if it satisfies

XTsxx =xxaxT =1

Based on the above knowledge, we can obtain the definition of
t-SVD.

Definition 3.1 ((t-SVD)). For X e RNixN2xNs ' jts t-SVD is given by
X=UxS*V',
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Fig. 2. The t-SVD of a tensor of size N; x N, x Ns.

where U € RM*NixNs and y e RN2xN2xNs are orthogonal tensors,
8§ € RNixN2xN3 s an f-diagonal tensor. Each of its frontal slices is
a diagonal matrix.

Fig. 2 shows the t-SVD of a third-order tensor. As discussed
in [38], t-SVD can be efficiently computed by matrix SVD in the
Fourier domain. Based on t-SVD, the tensor multi-rank is given as
follows.

Definition 3.2 (Tensor multi-rank). The tensor multi-rank of a ten-
sor X e RMixN2xNs g 3 vector r e RM3*1 with its ith element being
the rank of the ith frontal slice of 2.

Derived from the relationship between the rank function and
nuclear norm in the matrix case, the following t-SVD-based tensor
nuclear norm (t-SVD-TNN) is obtained.

Definition 3.3 (t-SVD-TNN). The t-SVD-TNN of a tensor X e
RN xN2xN3 - denoted as ||X||g, is defined as the sum of singular
values of all the frontal slices of 2, i.e.,

min{N;,N,} N3

> ZIS(I i k).

i=1 k=

Note that t-SVD-TNN is a valid norm which is the tightest con-
vex relaxation to [j-norm of the tensor multi-rank [20].

I¥lle = (3)

4. GLTA for MVC

In this section, we first propose a novel MVC method to learn

\4
min v (Z) +>
ZESw ——— =1
low-rank tensor representation

st. XW = XxWzw) L F0) v=12,---

noise local manifold

V), Z2=0@Eh,zO ..

the Graph regularized Low-rank representation Tensor and the
Affinity matrix (GLTA) in a unified framework. Afterward, we de-
sign an iterative algorithm to solve GLTA by the alternating direc-
tion method of multipliers (ADMM).

4.1. The proposed GLTA

To address those concerns as discussed in Section 1 whlie
learning a reliable affinity matrix, we consider the following three
aspects:

e According to the self-representation property [2,3], each data
point in the vth view can be represented as a linear combina-
tion of other points, ie., X¥) =X®zW L E®) where E) de-

()n IEW |21 +Aatr (ZVLWZO") + Az, |20 - 5|12 ) +yloll3
——— —_————

notes noise. Clearly, it is in general ill-posed without any re-
striction to obtain the representation matrix Z") and noise E(*)
from X. Inspired by Liu et al. [3], Zhang et al. [11], Xie et al.
[12], we introduce the low-rank tensor approximation to ex-
plore the high-order correlations between multiple views.

Following the assumption of graph embedding in [39] that if
two data points xf”) and x(“) are close in the original space,

their low-dimensional representatlons z ) and z(") should be

close to each other. This can be 111ustrated by the following
manifold regularization:

Z Z ”Z(U) Z(v) ||%W(”)

tr(Z(")L(")Z(")T), (4)

where W(") is the similarity between x ) and x(v) The vth view

graph Laplac1an matrix LV) [23] is constructed m the k-nearest
neighbor fashion and defined as L") = D® —wW®  where D(v)
is a diagonal matrix and Di(";) =Y Wl(;’) The trace of a matrix
is denoted as tr( - ). Using Eq. (4), the local structures hidden
in high-dimensional space can be well preserved [23].

As in [11,12,25], an intuitive way to construct the affinity matrix

isS=¢Y, (IZ(")I 4 |zW»” |>. This means that all representation

matrices are treated equally. As discussed before, we need to
assign different weights according to the importance of each
view. Therefore, we learn S by minimizing the linear combina-
tion of the residual [|Z® - S]||2 for each view.

Considering the above three aspects, the proposed GLTA is for-
mulated as

(5)

consensus representation

Z"), >0, Tyo,=1,

where || - || is the l,;-norm to remove the sample-specific cor-
ruptions. E = [EMW; E@; ... . EV)], Using ®( - ), all representation
matrices {Z")} are merged to construct a 3-order representation
tensor Z € RV a5 shown in Fig. 1(b). The regularization ¥ (Z2)
is to depict the low-rank property of Z. S is the final affinity ma-
trix to be learned. A1, A5, A3 and y are nonnegative parameters.

=[w1,wy, -, wy] is the weight vector, whose entry wy is the
relative weight of the vth view.

Remarks:

e From Eq. (5), we can see that the low-rank representation ten-
sor Z and the affinity matrix S can be simultaneously learned in
a unified framework, such that a meaningful affinity matrix can
be obtained as the input of the spectral clustering algorithm in
[16] to yield the clustering results;
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o The first term in Eq. (5) is to depict the low-rank property (the
global structure and high-order correlations) of the represen-
tation tensor Z while the second term can model the sample-
specific corruptions [3];

Using the manifold regularization, i.e., the third term in Eq. (5),
the local structures of multi-view data can be preserved such
that the data points being close in the original space still have
similar representations;

The last term in Eq. (5) enforces different weights on different
views, so as to obtain an informative affinity matrix. To over-
come the difficulty of weight allocation, Eq. (5) can adaptively
assign weights on different features by a constrained quadratic
programming.

The proposed unified framework GLTA can cover several
existing state-of-the-art MVC methods. For example, LT-MSC
[11] and t-SVD-MSC [12] can be regarded as two special cases
if W(Z2) is selected as the unfolding-based tensor nuclear norm
and t-SVD-TNN respectively, and A, = A3 =y = 0. The works in
[21,34] have pointed that t-SVD-TNN has achieved superior per-
formance than the other tensor decomposition forms including
CANDECOMP/PARAFAC decomposition and Tucker decomposition
in computer vision. Inspired by this, in the following subsection,
we will exploit the t-SVD-TNN to encode the low-rank tensor prop-
erty of z.

4.2. Optimization of GLTA

Using the t-SVD-TNN defined in Eq. (3), i.e., ¥(Z2) = || Z||@. the
model in Eq. (5) can be formulated as:

\4
min |2 M ||E®
min [12le + Y (MIE 2

v=1

+Aatr(ZWLWZOT) 4 ds, )12V - SII%) +yllwl? (6)

S.t. X<U):X(”)Z(v)+E("), wv=1,2,---,V),
Z2=0ZW, 7@ ... Z") » >0, T,w,=1.

Since we impose both global low-rankness and local structure
priors on Z, Eq. (6) is coupled with respect to Z. To make Z sep-
arable, we adopt the variable-splitting technique [40,41] and intro-
duce one auxiliary tensor variable ). Then, Eq. (6) can be reformu-
lated as the following optimization problem:

|4

i )

Jmin 1Zle+ 3 (MIEV 2y
v=1

+)\,2tr(Y(V)L(U)Y(U)T) + )\3wul|y(v) _ S”[%) + y”a)”% (7)

st. XW=XxWyW W (=12 ... V),
Z2=0ZW, 7@ ... 2 ©>0, Twy=1, Z=).

The corresponding augmented Lagrangian function of Eq. (7) is
Ly(Y. Z.E.S 0 {®W}LID) = [|IZ]le
4
+ X <A1||E<”)||2,1 + Aptr(YOLOY ')
v=1

FaawnllY W - SI2) + yllel3
|4

+ g( 21 X — x@y® _p®) 4 %”g +2-Y+ %II%),
V=

(8)

where {©® e R%*"} and ITe R™™V are Lagrange multipliers
with respect to two equality constraints, respectively. o > 0 is the
penalty parameter. Borrowing the idea of alternative update strat-
egy [11,19,42], Eq. (8) can be divided into the following six sub-
problems:

Size:n*n*V Size:n*V *n

y A

Rotation

_—>
Views

Fig. 3. Rotation of the representation tensor Z.

Step 1 Update Y: Given other variables in their previous itera-
tion, we can update Y by solving the following problem:

v
miny Y (thr(Y(WL(v)y(v)r) + Az ||Y® — 5r||12:)
v=1
Vv )
)
I %< Z] [X®) - xWyw _ g0 4 ﬁII% +z2-Y+ % ||%>~
V=

(9)

Eq. (9) can be separated into V independent minimization prob-
lems and the vth minimization problem is

miny o Aot (Y OLOYOT) + Az, ||Y©

3 (10)
—s2+ %(uxww CAY 2 4 Y ®) - Bi”ﬂ%),

o) )
where A" =Xx® —E® 4 % and B =z" + %- By setting
the derivative of Eq. (10) with respect to Y") to zero, we

can yield a Sylvester equation MxY® +Y® «N=C, where
M= QAswry + pOl+ pXP'XD, N=21,® +L®"), and C=

2A30¢ ySt + Pt (x(v)TA}’ +Bt(”)>. Then, the optimal solution of Yt(ﬂ

can be obtained by the off-the-shelf solver, such as the Matlab
function lyap.

Step 2 Update Z: Fixing other variables, Z can be updated by
solving

1 1
in—||z 12 = 7|3 1
ngnpt Il |I®+2|I Fellg, (11)

where F; = V1 — I1;/pr. Note that we need to rotate Z from size
nxnxVton x V x n as shown in Fig. 3. This is because of
two reasons: (1) as in Eq. (3), t-SVD-TNN performs the SVD on
each frontal slice of Z, leading to capturing of the “spatial-shifting”
correlation [34,38]. This means that t-SVD-TNN preserves only the
low-rank property of intra-view. However, we hope to capture the
low-rank property of inter-views. (2) the rotation operation can
significantly reduce the computation cost [12].

The closed-form solution of Eq. (11) can be obtained by the ten-
sor tubal-shrinkage operator [12,43]:

Zi1=Cy (Ft) =UxCy (S)* VT, (12)
P Pt

where Fr =U S VT, and Cy (S) =S« J, in which 7 is an f-
21

diagonal tensor whose diagonatl element in the Fourier domain is
J(,1, k) = max{1 — S‘(/{f§<) ,0}. The details on the update of Z; | are
summarized in Algorithm 1.

Step 3 Update E: Minimizing the augmented Lagrangian func-

tion in Eq. (8) with respect to E, we have
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Algorithm 1 : Update of Z based on t-SVD.

Algorithm 2 : GLTA for multi-view subspace clustering.

R™Vxn: parameter: T = £ ;

Input: tensor: F; € o

Fe = fit(x,[],3);
for k=1 ton do
[u®, sk yk] = SVD(]-A'(k))
J® = diag(max{1 — 3(1 SRR .0, i=1,.

T® = gk 7K.

200 — 40 5007
end for
Zeq = ifft(2. (). 3);
Output: tensor Z,q.

P NQU AN

v
: Pr 2
Et 1 arg;nm > AMIED 21 + 5 |E® — V|12

v=1

LA 1
argmin “L|[El|21 + 5 [IE — Te[I7. (13)
E Pt

1 2 4
[T[( >;Tt( );“. ;Tt( )]'

where ") =X®) — X0y + ©_ and T; =

The jth column of E;,; can be obtained by

IEC. )l - & .
— AT, i 2L TG )
EC I, R i o <ITG Dl

0, otherwise.

Ea(cj) =

(14)

Step 4 Update S: To obtain the optimal solution S;,;, we can
minimize the augmented Lagrangian function in Eq. (8) with re-
spect to S as

v
min Y" w1V - S| (15)

We also set the derivative of Eq. (15) with respect to S to zero. The
closed-form solution S;q is

S Zv Wr, WY, t+1
t+1 =

Zv Wty
which is based on the constraint }°, w¢y = 1.

Step 5 Update w: The optimization of w is transformed into the
following problem

Za)t WY (16)

min Z wya”

st.w>0, T,y =1, (17)

where a” ||Y[(J’r’% Ser1l2. ylol3 is used to smoothen the
weight dlstrlbutlon and avoid the futile solution [22]. Then,
Eq. (17) can be rewritten into the following quadratic programming
formulation

min||lo+ 553, st.@=0. Do, =1, (18)

2y
The above formula can be efficiently solved by any off-the-shelf
quadratic programming solver, such as quadprog.
Step 6 Update {®M)},I1, and p: The Lagrangian multipliers
{®©W}, 1T and the penalty parameter o can be updated by

O, = 00 + pX X — D)
ey = e + pe(Zep1 — Vipr)s (19)

Pe+1 = mm{,B * L, pmux}?

where 8 > 1 is to facilitate the convergence speed [44]. pmax is
the maximum value of the penalty parameter p. The whole proce-
dure of solving Eq. (7) is summarized in Algorithm 2, in which the

Input: multi-view features: {X")}; parameters: A{, A, A3, ¥ = 10;
nearest neighbors number 5; graph Laplacian matrices {L®};
cluster number K;

Initialize: Yy, 21, Eq, Sy, ©1, I initialized to 0; weight w; , = ;
p1 =103, 8=15¢=10"7t=1;

1: while not converged do

2. forv=1toV do

3 Update Yt(ﬂ according to Eq. (10);
4: end for

5. Update Z;,, according to Algorithm 1;

6:  Update E;,; according to Eq. (14);

7 Update S;, 1 according to Eq. (16);

8 Update a)H] according to Eq. (18);

9:  Update Ot+l' I;, 1, and p;, 1 according to Eq. (19);

10:  Check the convergence condition in Eq. (20);

11: end while

Output: Affinity matrix S;_;.

stopping criterion is defined as follows:

|X(V)_X(U)Yt(v) E(U1|Ioo,l/ 1..
|Zt+1 - yt+l ”oo
where tol > 0 is a pre-defined tolerance. Once the affinity matrix

S is obtained by GLTA (Algorithm 2), the spectral clustering algo-
rithm [16] is carried out to yield the final clustering results.

V} <tol, (20)

4.3. Computation complexity

The computation cost of Algorithm 2 is dominated by up-
dating Y, Z, and E. For Step 1, the computation cost of solv-
ing the Sylvester equation is O(n3). For Step 2, updating Z needs
O(2Vn?log(n)) operations to calculate 3D FFT and inverse FFT, and
O(V2n?) operations for performing SVD on V number of n x V ma-
trices. For Step 3, it costs @(Vn2) operations. As for the remaining
steps, their computation costs can be ignored since they contain
only the basic operations, such as matrix addition, subtraction, and
multiplication. Thus, the computation complexity of Algorithm 2 is
(Q(T(Vn3 +2Vn?log(n) +V?n?)), where T is the number of itera-
tions. As shown in Section 5.4, the proposed GLTA can converge
within 30 ~ 45 iterations.

5. Experiments results

To verify the effectiveness of the proposed GLTA, in this section,
we first conduct experiments to compare with twelve state-of-the-
art clustering methods. Seven challenging datasets from three dif-
ferent application areas are selected as the testing data. To provide
a comprehensive study of the proposed GLTA, we analyze GLTA
with respect to three important parameters and report the empir-
ical convergence of GLTA.

5.1. Datasets

Following [11,12,22], we evaluate the performance of GLTA on
seven challenging multi-view datasets, including:

« BBC4view dataset and BBCSport dataset': BBC4view and BBC-
Sport are news stories datasets. They contains 685 and 544 doc-
uments from BBC Sport website about sports news on 5 topics,
respectively. For each document, four different types of features
are extracted in BBC4view while two different types of features
are extracted in BBCSport.

1 http://mlg.ucd.ie/datasets/segment.html
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Table 1
Summary of seven challenging multi-view databases.
Category Dataset Instance  View  cluster
BBC4view 685 4 5
News stories BBCSport 544 2 5
3Sources 169 3 6
MSRC-V1 210 5 7
Scene Scene-15 4485 3 15
MITIndoor-67 5360 4 67
Generic object  COIL-20 1440 3 20

« 3Sources dataset’: It is a news stories dataset, which was
collected from three online news sources: BBC, Reuters, and
Guardian. It contains 416 distinct news stories from 6 classes.
Of them, 169 news documents are reported in all three sources
and each source serves as one view.

MSRC-V1 dataset: It contains 210 images in 7 classes, includ-
ing tree, building, airplane, cow, face, car, and bicycle. Following
[24], five-view features, including 24-D (dimension, D) colour
moment (CM), 576-D histogram of oriented gradients (HOG),
512-D GIST, 254-D CENTRIST feature, and 256-D local binary
pattern (LBP) are extracted.

Scene-15 dataset [45]: It contains 4485 outdoor and indoor
scene images from 15 categories. Following [12], three kinds of
image features, including 1800-D PHOW, 1180-D PRI-CoLBP, and
1240-D CENTRIST are extracted to represent Scene-15.
MITIndoor-67 dataset [46]: It consists of 15 thousand indoor
pictures spanning 67 different categories. We select one train-
ing subset including 5360 images for clustering. As in [12], ex-
cept three features used in Scene-15, one handcrafted feature
from VGG-VD [47] is subtracted to serve as a new view to pur-
suit better performance.

COIL-20 dataset®: There are 20 object categories and 1440
generic object images with 32 x 32 pixels. Similar to [12],
we also extract three view features, including 1024-D intensity,
3304-D LBP, and 6750-D Gabor.

The statistics of these datasets are summarized in Table 1.

5.2. Compared methods and evaluation measures

We compare GLTA with the following state-of-the-art methods,
including SSCbest4 [2]: single-view clustering via the [;-norm reg-
ularized representation matrix construction; LRRy.g”> [3]: single-
view clustering via the nuclear norm regularized representation
matrix construction; RSSp.° [30]: single-view clustering via si-
multaneously learning data representations and their affinity ma-
trix; MLAP? [25]: MVC by concatenating subspace representations
of different views and imposing low-rank constraint to explore the
complementarity; DiMSC® [19]: MVC with the Hilbert-Schmidt In-
dependence criterion; LT-MSC® [11]: MVC with low-rank tensor
constraint; MVCC'? [22]: MVC via concept factorization with local
manifold regularization; ECMSC'' [33]: exclusivity-consistency reg-
ularized MVC; MLAN'? [48]: MVC with adaptive neighbors; t-SVD-

http://mlg.ucd.ie/datasets/3sources.html
http://www.cs.columbia.edu/CAVE/software/softlib/
http://www.ccis.neu.edu/home/eelhami/codes.htm
https://sites.google.com/site/guangcanliu/
https://sites.google.com/view/xjguo
https://github.com/canyilu/LibADMM/tree/master/algorithms
http://cs.tju.edu.cn/faculty/zhangchangqing/code.html
/
/

© L N L s W N

http://cs.tju.edu.cn/faculty/zhangchangqing/code.html
https://github.com/vast-wang/Clustering
http://www.cbsr.ia.ac.cn/users/xiaobowang/codes/Demo_ECMSC.zip
http://www.escience.cn/people/fpnie/papers.html

5 = 2

MSC™® [12]: MVC via tensor multi-rank minimization; MLRSSC'*
[4]: MVC via low-rank sparse subspace clustering; MSC_IAS'" [17] :
MVC with intactness-aware similarity. The first three methods be-
long to single-view clustering baselines while others belong to
multi-view clustering ones. We choose these methods due to their
popularity and code availability. We also follow their experiment
settings for fair comparison. Moreover, the deep feature is im-
posed on MITIndoor-67 dataset. We also compare the proposed
GLTA with GSNMF-CNN [49] in Table 8. For SSCpos» LRR} s, and
RSS,,.;» €ach feature is used independently and the best cluster-
ing result is reported. For a full comparison, we also perform SSC,
LRR, and RSS with the joint view feature which is concatenated
by all features. They are denoted as SSCcyn, LRRcg,, and RSScg,,
respectively. Since there exists one random parameter in MLAN,
we run MLAN 10 trials and report the best clustering result. For
DiMSC, LT-MSC, t-SVD-MSC, MLRSSC, and MSC_IAS, they all first
learn the representation matrix or tensor, and then construct the
affinity matrix. For all methods except MLAN, the spectral cluster-
ing algorithm [16] is performed to obtain the clustering result. Qur
previous conference paper [36] used the Tucker decomposition to
encode the low-rank property, denoted as GLTA_Tucker.

Following [11,12], we exploit six popular clustering measures
[50], i.e., accuracy (ACC), normalized mutual information (NMI), ad-
justed rank index (AR), F-score, Precision, and Recall, to evaluate
the clustering performance. One can refer to [12] for more details
of these six measures. Generally, the higher values these six mea-
sures have, the better the clustering quality is. Since the spectral
clustering is based on K-means for all methods and different ini-
tializations may yield different results, we run 10 trials for each
experiment and report their average performance with standard
deviations.

5.3. Clustering performance comparison

All clustering results on seven benchmark datasets are reported
in Tables 2-8. The best results for each index are highlighted in
boldface and the second-best results are underlined.

We reach the following observations from these experiment re-
sults:

e In most cases, the performance of GLTA is better than or
comparable to those of all competing methods, especially on
BBC4View, Scene-15, MITIndoor-67, and COIL-20 datasets. GLTA
with t-SVD-NN outperforms GLTA_Tucker in all cases. This in-
dicates that the singular value decomposition-based tensor nu-
clear norm may be the better candidate for the low-rank prop-
erty of the representation tensor over the Tucker decomposi-
tion. The improvement of the proposed GLTA is around 16.7,
11.6, 19.6, 18.1, 22.7, and 12.9 percentage points with respect
to six measures over the second-best method t-SVD-MSC on
Scene-15 dataset, and around 23.8, 22.3, 36.1, 35.6, 34.9, and
36.3 percentage points on MITIndoor-67 dataset, respectively.
The main reason is that DiMSC, LT-MSC, t-SVD-MSC-MLRSSC,
and MSC_IAS construct the representation matrix or tensor and
affinity matrix in two separate steps without the considera-
tion of the various contributions of different features. However,
the proposed GLTA learns the representation tensor and affinity
matrix in a synchronous way such that the high dependence
between them can be well exploited. More importantly, the
promising performance of GLTA also benefits from the preser-
vation of the local geometrical structures;

13 https://www.researchgate.net/profile/Yuan_Xie4/publications
14 https://github.com/mbrbic/Multi-view-LRSSC
15 http://www.cbsr.ia.ac.cn/users/xiaobowang/codes/MSC_IAS_Released.zip
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https://github.com/canyilu/LibADMM/tree/master/algorithms
http://cs.tju.edu.cn/faculty/zhangchangqing/code.html
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https://github.com/vast-wang/Clustering
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https://www.researchgate.net/profile/Yuan_Xie4/publications
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Table 2
Clustering results (mean =+ standard deviation) on BBC4view.
Method ACC NMI AR F-score Precision Recall
SSChest 0.660 + 0.002  0.494 + 0.005  0.470 + 0.001 0.599 + 0.001 0.578 + 0.001 0.622 + 0.001
SSCeon 0.848 + 0.001 0.667 +£ 0.002  0.702 £ 0.002  0.770 &£ 0.002  0.787 £ 0.002  0.754 + 0.002
LRRp ¢ 0.802 + 0.000  0.568 + 0.000  0.621 £+ 0.000  0.712 £+ 0.000  0.697 £ 0.000  0.727 + 0.000
Con 0.804 £ 0.000  0.611 +£ 0.000 0.609 &+ 0.000  0.700 £+ 0.000  0.710 £ 0.000  0.690 + 0.000
RSSpest 0.837 £ 0.000  0.621 £ 0.000  0.665 &+ 0.000  0.747 £+ 0.000  0.720 £ 0.000  0.775 + 0.000
Con 0.877 + 0.001 0.738 £ 0.002  0.758 £ 0.002  0.812 + 0.001 0.834 + 0.001 0.792 + 0.002
MLAP 0.872 £ 0.000  0.725 +£ 0.000  0.751 + 0.000  0.808 &+ 0.000  0.824 + 0.000  0.793 + 0.000
DiMSC 0.892 + 0.001 0.728 £ 0.002  0.752 + 0.002  0.810 &+ 0.002  0.811 £ 0.002  0.810 + 0.002
LT-MSC 0.591 + 0.000  0.442 4+ 0.005  0.400 =+ 0.001 0.546 + 0.000  0.525 4+ 0.000  0.570 + 0.001
MVCC 0.745 + 0.001 0.587 + 0.001 0.550 + 0.000  0.656 + 0.001 0.654 + 0.001 0.658 + 0.000
ECMSC 0.308 + 0.028  0.047 +£ 0.009  0.008 + 0.018  0.322 £+ 0.017  0.239 £ 0.009  0.497 + 0.064
MLAN 0.853 £ 0.007 0.698 + 0.010  0.716 £ 0.005  0.783 £ 0.004  0.776 £ 0.003  0.790 + 0.004
t-SVD-MSC 0.858 + 0.001 0.685 + 0.002  0.725 4+ 0.002  0.789 + 0.001 0.800 + 0.001 0.778 + 0.002
MLRSSC 0.888 + 0.074  0.761 +£ 0.036  0.788 + 0.073  0.837 &+ 0.056  0.845 + 0.053  0.830 + 0.061
MSC_IAS 0.820 + 0.001 0.632 + 0.001 0.647 + 0.002  0.728 + 0.001 0.741 £ 0.001 0.715 + 0.002
GLTA_Tucker  0.910 + 0.000  0.771 £+ 0.000  0.810 + 0.000  0.854 + 0.000  0.864 + 0.000  0.845 + 0.000
GLTA 0.996 + 0.000  0.983 + 0.000 0.990 + 0.000 0.993 + 0.000 0.996 + 0.000  0.990 + 0.000
Bold fonts denote the best performance; underlined ones represent the second-best results in all tables.
Table 3
Clustering results (mean =+ standard deviation) on BBCSport.
Method ACC NMI AR F-score Precision Recall
SSChest 0.627 £ 0.003  0.534 + 0.008  0.364 &+ 0.007  0.565 & 0.005  0.427 £+ 0.004  0.834 + 0.004
Con 0.666 + 0.011 0.590 + 0.024  0.440 £+ 0.088  0.609 + 0.046  0.494 + 0.062  0.819 + 0.061
LRRp ¢ 0.836 + 0.001 0.698 + 0.002  0.705 + 0.001 0.776 + 0.001 0.768 + 0.001 0.784 + 0.001
Con 0.853 + 0.000 0.738 + 0.000  0.760 + 0.000  0.818 + 0.000  0.807 + 0.000  0.830 + 0.000
RSSpest 0.878 £ 0.000  0.714 £ 0.000  0.717 £ 0.000  0.784 £+ 0.000  0.787 £ 0.000  0.782 + 0.000
RSScon 0.870 + 0.001 0.731 £+ 0.001 0.758 + 0.001 0.815 + 0.001 0.822 + 0.001 0.809 + 0.001
MLAP 0.868 + 0.001 0.763 +£ 0.003  0.791 + 0.003  0.842 + 0.002  0.827 £+ 0.002  0.858 + 0.003
DiMSC 0.922 + 0.000 0.785 + 0.000 0.813 £ 0.000  0.858 & 0.000  0.846 £ 0.000  0.872 + 0.000
LT-MSC 0.460 + 0.046  0.222 + 0.028  0.167 &+ 0.043  0.428 + 0.014  0.328 £ 0.028  0.629 + 0.053
MVCC 0.928 + 0.000 0.816 £ 0.000  0.831 &+ 0.000  0.870 &+ 0.000  0.889 + 0.000  0.853 + 0.000
ECMSC 0.285 + 0.014  0.027 +£ 0.013  0.009 + 0.011 0.267 +£ 0.020  0.244 4+ 0.007  0.297 + 0.045
MLAN 0.721 £ 0.000  0.779 £ 0.000  0.591 £+ 0.000  0.714 £+ 0.000  0.567 £ 0.000  0.962 + 0.000
t-SVD-MSC 0.879 £ 0.000  0.765 + 0.000  0.784 + 0.000  0.834 + 0.000  0.863 + 0.000  0.807 + 0.000
MLRSSC 0.815 £ 0.020  0.681 + 0.005 0.678 £ 0.007  0.753 £ 0.004  0.775 £ 0.015  0.732 + 0.007
MSC_IAS 0.948 + 0.000  0.854 + 0.000  0.861 + 0.000  0.894 + 0.000  0.892 + 0.000  0.897 + 0.000
GLTA_Tucker  0.939 + 0.000 0.825 &+ 0.000  0.849 + 0.000  0.885 & 0.000  0.890 4+ 0.000  0.880 + 0.000
GLTA 1.000 + 0.000  1.000 + 0.000  1.000 + 0.000  1.000 + 0.000  1.000 + 0.000  1.000 + 0.000
Table 4
Clustering results (mean =+ standard deviation) on 3Sources.
Method ACC NMI AR F-score Precision Recall
SSChest 0.762 + 0.003  0.694 4+ 0.003  0.658 &+ 0.004  0.743 £ 0.003  0.769 =+ 0.001 0.719 + 0.005
Con 0.670 + 0.006  0.632 + 0.009  0.511 + 0.009  0.643 + 0.007  0.556 + 0.004  0.762 + 0.014
LRRp et 0.647 £ 0.033  0.542 + 0.018  0.486 + 0.028  0.608 &+ 0.033  0.594 + 0.031 0.636 + 0.096
Con 0.607 £ 0.019  0.605 + 0.016  0.440 £+ 0.026  0.554 + 0.021 0.635 + 0.022  0.491 £ 0.019
RSSyest 0.722 + 0.000  0.601 + 0.000  0.533 + 0.000  0.634 + 0.000  0.679 + 0.000  0.595 + 0.000
con 0.731 £ 0.007  0.693 + 0.006  0.591 + 0.013  0.678 £ 0.010  0.738 £ 0.016  0.627 + 0.006
MLAP 0.805 +£ 0.000  0.756 + 0.000  0.688 &+ 0.000  0.762 &+ 0.000  0.751 £ 0.000  0.773 + 0.000
DiMSC 0.795 +£ 0.004  0.727 £ 0.010  0.661 £ 0.005  0.748 &+ 0.004  0.711 £ 0.005  0.788 + 0.003
LT-MSC 0.781 £ 0.000  0.698 + 0.003  0.651 + 0.003  0.734 £+ 0.002  0.716 £+ 0.008  0.754 + 0.005
MVCC 0.761 £ 0.016  0.698 + 0.016  0.626 + 0.010  0.731 £+ 0.008  0.607 £+ 0.009  0.916 + 0.008
ECMSC 0.346 +£ 0.025  0.132 £ 0.029  0.011 £ 0.031 0.295 +£ 0.013  0.240 £ 0.019  0.391 £ 0.043
MLAN 0.775 £ 0.015  0.676 + 0.005  0.580 + 0.008  0.666 + 0.007  0.756 + 0.003  0.594 + 0.009
t-SVD-MSC 0.781 £ 0.000  0.678 + 0.000  0.658 &+ 0.000  0.745 &+ 0.000  0.683 £ 0.000  0.818 + 0.000
MLRSSC 0.697 +£ 0.034  0.604 + 0.012  0.562 + 0.041 0.660 + 0.030  0.690 + 0.050  0.633 £ 0.025
MSC_IAS 0.797 £ 0.017  0.641 +£ 0.009  0.576 + 0.026  0.666 + 0.022  0.729 + 0.014  0.613 + 0.028
GLTA_Tucker  0.846 + 0.000  0.728 £+ 0.000  0.665 + 0.000  0.736 + 0.000  0.805 + 0.000  0.678 + 0.000
GLTA 0.859 + 0.008  0.753 + 0.015 0.713 £ 0.014 0.775 £ 0.011  0.827 £ 0.009  0.730 £ 0.013

e In general, multi-view clustering approaches achieve better

sor nuclear norm is a loose surrogate of Tucker rank. Moreover,

clustering performance than the single-view clustering ap-
proaches SSCpest, LRRpest, and RSSpes;. This is mainly because
single-view clustering methods focus on specific view feature
while the high-order cross information among multiple views
is well captured by these multi-view clustering approaches;

LT-MSC achieves unsatisfactory results on the first two datasets
which may come from the fact that the unfolding-based ten-

t-SVD-MSC has achieved better performance than LT-MSC. The
main reason is that t-SVD-TNN can better uncover the global
structure of the representation tensor than the unfolding-based
tensor nuclear norm;

MLAN performs worse than three single-view clustering meth-
ods on BBCSport and Scene-15 datasets. The main reason may
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Table 5
Clustering results (mean + standard deviation) on MSRC-V1.
Method ACC NMI AR F-score Precision Recall
SSCpest 0.791 +£ 0.007  0.750 + 0.005  0.651 &+ 0.006  0.701 &+ 0.005  0.670 £+ 0.008  0.736 + 0.003
SSCeon 0.762 +£ 0.000  0.748 + 0.002  0.658 £ 0.001 0.707 £ 0.002  0.673 £ 0.002  0.748 £ 0.001
LRRp ¢ 0.695 + 0.000  0.590 + 0.000  0.491 + 0.000  0.562 + 0.000  0.560 + 0.000  0.564 + 0.002
con 0.694 + 0.004  0.553 +£ 0.009  0.470 &+ 0.007  0.545 £+ 0.006  0.535 £ 0.006  0.556 + 0.007
RSSpest 0.751 £ 0.002  0.634 + 0.003  0.538 + 0.004  0.604 &+ 0.004  0.587 £ 0.004  0.621 + 0.003
Con 0.801 +£ 0.040  0.692 + 0.030  0.625 + 0.047  0.678 £ 0.041 0.670 + 0.040  0.686 + 0.041
MLAP 0.857 £ 0.000  0.750 + 0.000  0.704 + 0.000  0.746 + 0.000  0.741 £ 0.000  0.751 + 0.000
DiMSC 0.759 £ 0.009  0.622 + 0.015 0.548 £ 0.015 0.611 £ 0.013  0.606 + 0.013  0.616 + 0.012
LT-MSC 0.831 £ 0.003  0.743 £ 0.004  0.665 &+ 0.004  0.712 £ 0.004  0.699 £ 0.004  0.725 + 0.003
MVCC 0.622 + 0.018  0.588 + 0.013  0.458 + 0.015 0.538 + 0.014  0.510 + 0.012  0.569 + 0.020
ECMSC 0.795 £ 0.002  0.750 + 0.002  0.681 + 0.001 0.727 + 0.001 0.705 + 0.001 0.750 + 0.001
MLAN 0.859 £ 0.003  0.751 £ 0.003  0.709 £+ 0.004  0.750 &+ 0.003  0.727 £ 0.004  0.776 + 0.002
t-SVD-MSC 0.991 + 0.000 0.982 + 0.000 0.978 + 0.000 0.981 + 0.000  0.980 + 0.000  0.982 + 0.000
MLRSSC 0.521 + 0.051 0.411 £ 0.041 0.285 + 0.052 0386 + 0.044 0379 4+ 0.045  0.392 + 0.042
MSC_IAS 0.909 + 0.000  0.844 4+ 0.000  0.802 £+ 0.000  0.830 & 0.000  0.820 £ 0.000  0.840 + 0.000
GLTA_Tucker  0.878 £+ 0.006  0.783 £ 0.009  0.737 £ 0.010  0.774 £ 0.010  0.763 + 0.000  0.785 + 0.009
GLTA 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000  1.000 + 0.000  1.000 + 0.000
Table 6
Clustering results (mean + standard deviation) on COIL-20.
Method ACC NMI AR F-score Precision Recall
SSChest 0.803 £ 0.022 0935 4+ 0.009  0.798 £ 0.022  0.809 £+ 0.013  0.734 £ 0.027  0.804 + 0.028
SSCeon 0.851 +£ 0.000  0.960 + 0.000  0.833 + 0.000  0.843 + 0.000  0.757 + 0.000  0.949 + 0.000
LRRyest 0.761 +£ 0.003  0.829 + 0.006  0.720 &+ 0.020  0.734 £ 0.006  0.717 £ 0.003  0.751 + 0.002
LRR¢on 0.766 + 0.020  0.866 &+ 0.008  0.722 £ 0.013  0.737 £ 0.012  0.694 £ 0.024  0.787 + 0.016
RSSyest 0.837 £ 0.012 0930 &+ 0.006  0.789 £+ 0.005  0.800 £ 0.005  0.717 £ 0.012  0.897 + 0.017
con 0.757 + 0.011 0.836 + 0.008 0.711 £ 0.016  0.725 £ 0.016  0.717 £ 0.016  0.732 £+ 0.015
MLAP 0.738 £ 0.020  0.825 +£ 0.009  0.685 £ 0.023  0.701 £ 0.021 0.688 + 0.027  0.715 + 0.016
DiMSC 0.778 £ 0.022  0.846 + 0.002  0.732 £ 0.005  0.745 £+ 0.005  0.739 £ 0.007  0.751 £ 0.003
LT-MSC 0.804 + 0.011 0.860 + 0.002  0.748 + 0.004  0.760 + 0.007 0.741 + 0.009  0.776 + 0.006
MVCC 0.732 £ 0.018  0.845 + 0.007  0.675 &+ 0.022  0.692 + 0.021 0.647 + 0.034  0.744 + 0.013
ECMSC 0.782 £ 0.001 0.942 + 0.001 0.781 + 0.001 0.794 + 0.001 0.695 + 0.002  0.925 + 0.001
MLAN 0.862 + 0.011 0.961 + 0.004 0.835 + 0.006 0.844 + 0.013  0.758 + 0.008  0.953 + 0.007
t-SVD-MSC 0.830 £ 0.000  0.884 + 0.005  0.786 &+ 0.003  0.800 + 0.004  0.785 £ 0.007  0.808 + 0.001
MLRSSC 0.859 + 0.007  0.960 =+ 0.001 0.835 + 0.004  0.843 +£ 0.003  0.758 + 0.001  0.952 + 0.007
MSC_IAS 0.845 +£ 0.009  0.958 + 0.005 0.849 + 0.010  0.839 £+ 0.012  0.803 £ 0.008  0.910 + 0.006
GLTA_Tucker  0.878 + 0.008  0.945 + 0.001  0.869 + 0.007  0.875 + 0.007 0.856 + 0.013  0.895 + 0.001
GLTA 0.903 + 0.006  0.946 + 0.001 0.891 + 0.007 0.897 +£ 0.006 0.893 + 0.013  0.900 £ 0.001
Table 7
Clustering results (mean =+ standard deviation) on Scene-15.
Method ACC NMI AR F-score Precision Recall
SSChest 0.444 + 0.003  0.470 + 0.002  0.279 + 0.001 0.337 +£ 0.002  0.292 + 0.001 0.397 £ 0.001
Con 0.436 + 0.010  0.527 +£ 0.003  0.317 £ 0.008  0.371 £+ 0.007  0.324 + 0.009  0.434 + 0.013
LRRp et 0.445 + 0.013  0.426 + 0.018  0.272 £ 0.015  0.324 £ 0.010  0.316 £ 0.015  0.333 £ 0.015
LRR¢on 0.523 + 0.001 0.532 + 0.001 0.375 £ 0.002  0.418 + 0.002  0.419 + 0.001 0.418 + 0.002
RSSpest 0.468 + 0.008  0.441 + 0.003  0.310 + 0.004  0.357 + 0.003  0.358 + 0.003  0.356 + 0.004
MLAP 0.568 + 0.005  0.563 + 0.002  0.405 &+ 0.002  0.447 £+ 0.002  0.439 £ 0.001 0.455 + 0.003
DiMSC 0.300 +£ 0.010  0.269 +£ 0.009  0.117 £ 0.012  0.181 £ 0.010  0.173 £ 0.016  0.190 £ 0.010
LT-MSC 0.574 £ 0.009  0.571 + 0.011 0.424 + 0.010  0.465 + 0.007  0.452 + 0.003  0.479 + 0.008
MVCC 0.469 + 0.001 0.496 + 0.002  0.318 +£ 0.002  0.369 + 0.001 0.342 +£ 0.002  0.400 + 0.001
ECMSC 0.457 + 0.001 0.463 + 0.002  0.303 £ 0.001 0.357 + 0.001 0.318 & 0.001 0.408 £ 0.001
MLAN 0.332 +£ 0.000  0.475 + 0.000  0.151 + 0.000  0.248 + 0.000  0.150 + 0.000  0.731 + 0.000
t-SVD-MSC  0.812 + 0.007  0.858 + 0.007  0.771 + 0.003  0.788 + 0.001  0.743 + 0.006  0.839 + 0.003
MLRSSC 0.484 + 0.026  0.463 + 0.011 0.313 £ 0.015 0362 + 0.014 0355 +£ 0.015  0.368 &+ 0.013
MSC_IAS 0.583 + 0.003  0.603 + 0.003  0.429 &+ 0.006  0.472 + 0.006  0.438 + 0.009  0.512 £ 0.013
GLTA 0.979 + 0.027 0.974 + 0.007 0.967 + 0.022  0.969 + 0.020 0.970 + 0.024  0.968 + 0.017

be that MLAN learns the affinity matrix directly from the raw 5.4. Model analysis
data that may contain noise and outliers;

e The low-rank matrix-based multi-view subspace clustering In this section, we aim to present a comprehensive study of the
methods, i.e., MLRSSC and MSC_IAS have unstable performance. proposed GLTA. We first analyze the parameter sensitivity and em-
For example, they outperform almost competing methods on pirical convergence, and then explain why the proposed GLTA can
BBC4view, BBCSport and COIL-20 datasets but achieve worse obtain superiority over all competing methods.

performance than SSC and LRR on MITIndoor-67 dataset.

In summary, these experiment results indicate that learning the
representation tensor and affinity matrix in a synchronous way has
the potential to the improvement of the clustering performance.

(1) Parameter selection: We set the number of the nearest
neighbors as 5 and y =10 for all experiments. Here, we investigate
how to tune parameters in the proposed GLTA. Three free parame-
ters Aq, Ay, and A3 in GLTA should be tuned. Specifically, they are
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Table 8
Clustering results (mean =+ standard deviation) on MITIndoor-67.
Method ACC NMI AR F-score Precision Recall
SSChest 0.475 + 0.008  0.615 + 0.003  0.332 + 0.006  0.343 + 0.006  0.314 £+ 0.007  0.377 £ 0.007
SSCeon 0.411 £ 0.009  0.528 + 0.003  0.258 £ 0.005  0.270 £ 0.005  0.255 & 0.007  0.286 =+ 0.005
LRRy o5 0.120 + 0.004  0.226 + 0.006  0.031 + 0.007  0.045 + 0.004  0.044 + 0.006  0.047 + 0.004
Con 0.358 £ 0.010  0.492 + 0.004  0.223 £ 0.005  0.234 &+ 0.005  0.230 &+ 0.005  0.239 + 0.004
RSSpest 0.490 + 0.013  0.603 + 0.005 0.338 + 0.008  0.348 &+ 0.008  0.337 &+ 0.008  0.359 =+ 0.008
DiMSC 0.246 + 0.000  0.383 + 0.003  0.128 &+ 0.005  0.141 £+ 0.004  0.138 + 0.001 0.144 + 0.002
LT-MSC 0.431 £ 0.002  0.546 + 0.004  0.280 + 0.008  0.290 + 0.002  0.279 £+ 0.006  0.306 + 0.005
ECMSC 0.353 £ 0.002  0.489 + 0.001 0.216 + 0.002  0.228 + 0.001 0.213 + 0.001 0.247 + 0.002
MLAN 0.468 + 0.010  0.611 £ 0.003 0312 £ 0.006  0.323 £ 0.006  0.299 £ 0.008  0.352 £ 0.003
GSNMF-CNN  0.517 +£ 0.003  0.673 + 0.003  0.264 + 0.005  0.372 + 0.002  0.367 + 0.004  0.381 + 0.001
t-SVD-MSC 0.684 + 0.005  0.750 + 0.007  0.555 4+ 0.005  0.562 + 0.008  0.543 + 0.005  0.582 + 0.004
MSC_IAS 0.333 £ 0.006  0.466 + 0.002  0.176 & 0.004  0.189 £+ 0.004  0.174 &£ 0.004  0.207 £ 0.004
GLTA 0.922 + 0.014 0973 + 0.004 0916 + 0.004 0918 + 0.013  0.892 + 0.018  0.945 + 0.009
MLRSSC runs out of memory in current platform.
Table 9
Comparison among different view features by SSC [2] and LRR [3].
Dataset SSC (ACC/NMI) LRR (ACC/NMI)
View 1 View 2 View 3 View 4 View 1 View 2 View 3 View 4
BBC4view  0.660/0.494  0.414/0.238  0.542/0.259  0.415/0.236  0.802/0.568  0.769/0.525  0.791/0.550  0.740/0.497
3Sources 0.661/0.568  0.762/0.694  0.695/0.632 0.580/0.516  0.647/0.542  0.618/0.511
BBCSport 0.589/0.534  0.627/0.534 0.836/0.698  0.816/0.630
Table 10
Comparison of GLTA and its variants (ACC/NMI).
ACC/NMI
BBC4view BBCSport 3Sources MSRC-V1 Scenel5 COIL-20 Average
GLTA 0.996/0.983  1.000/1.000  0.859/0.753  1.000/1.000  0.979/0.974  0.903/0.946  0.9562/0.9427
GLTA-p1  0.972/0.909  0.959/0.905  0.749/0.720  0.879/0.828  0.912/0.918  0.891/0.940  0.8937/0.8700
GLTA-p2  0.417/0.371  0.998/0.994  0.291/0.083  1.000/1.000  0.885/0.889  0.835/0.905  0.7377/0.7070
Table 11
Complexity and average running time on all datasets (in seconds).
Data MLAP DiMSC LT-MSC MLAN t-SVD-MSC MLRSSC MSC_IAS GLTA
Complexity O(Tn3) oTVn3) oTVn3) O(dn? +Ten?) — O(TVrtlog(n)) — O(TVR®)  O(Tn?) O(TV(n3 + nzlog(n)))
BBC4view 555.41 207.21 335.51 2.76 97.99 15.59 6.25 192.45
BBCSport 159.65 38.15 77.23 1.89 19.59 6.51 15.16 54.63
3Sources 43.03 4.89 23.45 1.01 8.72 2.59 3.47 10.24
MSRC-V1 29.37 4.73 20.15 1.44 5.96 1.12 3.39 11.12
COIL-20 1826.51 617.29 874.91 31.03 169.10 34.52 41.55 1689.22
Scene-15 13825.53 1244936  7705.87 3318.62 3429.46 3592.46 185.45 16744.69
MITIndoor-67  33851.14  31254.21  20834.12  429.74 3404.86 - 254.89 25332.23
Table 12
Average running time on BBC4view with different value combinations (in seconds).
(A1, A2, A3)  (0.005,0.01,01)  (0.005,0.01,10)  (0.005,0.1,0.1)  (0.005,0.1,10)
Time 195.49 192.45 195.10 187.24
Iteration 46 45 46 44
(A1, X2, A3)  (0.1,0.01,0.1) (0.1,0.01,10) (0.1,0.1,0.1) (0.1,0.1,10)
Time 165.84 162.22 172.12 171.21
Iteration 38 38 39 39

empirically selected from the sets of [0.001, 0.005, 0.01, 0.05, 0.1,
0.2, 04, 0.5], [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 1, 2, 5, 10,
50, 100, 500], and [0.01,0.1,0.5,1,3,5,7,10,50,100], respectively. Due to
page limitation, we only show the ACC values of our GLTA with
different combinations of Aq, A, and A3 on BBCSport and MSRC-
V1 datasets in Fig. 4. It is well known that the error term may
have less importance for the objective function [3]. Inspired by this
observation, we first fix A; as a relative small constant, and then
perform GLTA with different combinations of A, and A3 as shown
in the left figures of Fig. 4. We can see that GLTA is not sensitive

to parameter A, and As. Finally, we fix A, and A3, and perform
GLTA to investigate the influence of A;. We can see that when A; is
small, GLTA can yield promising results. Overall, the recommended
parameters of GLTA are that A, A,, and A3 can select from the
interval [0.005, 0.2], [0.05,0.2], and [0.01,1], respectively.

(2) Convergence analysis: It is intractable to derive the theoret-
ical convergence proof of the proposed GLTA. Instead, we provide
the empirical convergence analysis on four datasets in Fig. 5(a),
in which the vertical axis denotes the error defined as ¥, [[X® —
XYy _EO" /5 IX®||p. After 15 iterations, the error yields
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Fig. 5. (a) Empirical convergence versus iterations; (b) ACC and NMI versus iterations.

a stable value. This means that GLTA can converge within a few
iterations. We also report the ACC and NMI values with each iter-
ation in Fig. 5(b), since they can reflect the clustering performance
to some extent. We can see that when the number of iterations in-
creases, ACC and NMI values consistently increase until approach-
ing the best values. This indicates indirectly that GLTA is conver-
gent on these real datasets.

(3) The necessity of the feature weight: The clustering re-
sults by SSC [2] and LRR [3] on each view feature are reported
in Table 9. We can see that for the same dataset, different fea-
tures may yield various clustering results. For example, the values
of ACC and NMI on BBC4view by SSC vary from 41.4 to 66.0 and
23.6 to 49.4 percentage points, respectively. For 3Sources, differ-
ences among three views by SSC with respect to ACC and NMI
are 10.1 and 12.6 percentage points, respectively. In addition, on
3Sources and MSRC-v1 datasets, SSC¢,, and LRR,,, perform worse
than SSC and LRR. Therefore, we can draw a conclusion that differ-
ent features have various contributions to clustering results. This
is one of the fundamental motivations of this paper. Thus, it is of

vital importance to fully consider the different contributions of dif-
ferent features in the multi-view clustering procedure.

(4) Ablation study:

In this section, we aim to investigate the ablation study of GLTA
including the roles of local structures and the scheme of simul-
taneously learning the representation tensor and affinity matrix.
From all above experimental results, we can see that only consid-
ering the low-rank tensor representation (such as, LT-MSC and t-
SVD-MSC) or the local structures (such as, MLAN) cannot achieve
satisfactory performance. In addition, existing methods, including
DiMSC, LT-MSC, and t-SVD-MSC, learn the representation tensor,
and then construct the affinity matrix. They fail to consider the
various contributions of different features and the dependence be-
tween features. To address these issues, the proposed GLTA im-
proves existing methods in two phases: (1) GLTA learns the rep-
resentation tensor and affinity matrix simultaneously; (2) GLTA in-
corporates the local geometrical structures into one unified frame-
work. To investigate the contributions of these above two fac-
tors individually, we conduct experiments by performing two tests.
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Specifically, the first test sets A,, A3 =0 and tunes other parame-
ters, while the second test fixes A3 = 0.

The first test, denoted as GLTA-p1, sets parameters A;, Az to
zero to verify the contribution of Phase (1). In GLTA-p1, Z and
S are learned simultaneously while the local structures are miss-
ing. The second test, called GLTA-p2, sets parameter A3 to zero
to investigate the contribution of Phase (2). These two tests are
performed on the BBC4view, BBCSport, 3Sources, MSRC-V1, Scene-
15, and COIL-20 databases. The clustering results of GLTA, GLTA-
p1l, and GLTA-p2 are reported in Table 10. As can be seen, GLTA
has achieved superior performance to GLTA-p1 and GLTA-p2 in all
cases. In average, GLTA improves GLTA-p1 and GLTA-p2 at 21.85
and 6.25 percentage points with respect to the ACC value and at
23.57 and 7.27 percentage points in terms of the NMI value. These
results directly verify that the superiority of GLTA, and indicate
that constructing the representation tensor and affinity matrix in
a synchronous way and preserving the local geometrical structures
can significantly boost the clustering performance.

(5) Comparison of running time: The average running time
of different multi-view clustering methods is shown in Table 11.
All experiments are implemented in Matlab 2016a on a work-
station with 3.50GHz CPU and 16GB RAM. MLAN and MSC_IAS
have the shortest processing time among all methods, especially
when handling the large-scale datasets. MLAP and DiMSC have the
running time comparable with the proposed GLTA. The low-rank
tensor-based multi-view clustering methods (including LT-MSC, t-
SVD-MSC, and the proposed GLTA) have high computation cost
while they have achieved better performance than other compet-
ing methods. The underlying reason is that LT-MSC, t-SVD-MSC,
and GLTA find the correlation of the representation matrices in
a global view via the low-rank tensor approximation. The main
shortcoming of the proposed GLTA is the high computation com-
plexity. There are two possible approaches to address this issue.
Following [13], the first approach is to learn a flexible affinity ma-
trix that may avoid solving a Sylvester equation. Using the ten-
sor factorization strategy [51], the second one is to factorize the
representation tensor into the product of two tensors with small
sizes. This approach needs only matrix multiplications and does
not compute the tensor singular value decomposition. Our future
work will investigate how to use these two approaches to develop
efficient and effective multi-view clustering methods (Table 12).

To further investigate the computational complexity of the pro-
posed GLTA, we conduct experiments on BBC4view with different
combinations of (A, Ay, A3). The results are shown in Table 12.
We can see that different settings of parameters (A1, A, A3) may
slightly influence on the running time of GLTA.

6. Conclusion

In this paper, we developed a novel method for multi-view sub-
space clustering by learning graph regularized low-rank represen-
tation tensor and affinity matrix (GLTA) in a unified framework.
GLTA can learn the low-rank representation tensor and affinity ma-
trix simultaneously. The representation tensor is encoded by the t-
SVD-based tensor nuclear norm and the local manifolds while the
affinity matrix is constructed by assigning different weights to dif-
ferent view features. Extensive experiments on seven challenging
datasets demonstrated that our GLTA outperforms the state-of-the-
arts.

For the future exploration, the first direction is how to integrate
the spectral clustering into the low-rank tensor representation-
based methods to learn the common indicator matrix. The second
one is, in some real applications like webpage clustering and dis-
ease diagnosing, some samples of different views may be missing.
Thus, it is natural to consider how to extend the proposed method
for incomplete multi-view clustering. The last one is to develop

multi-view clustering methods with an unknown number of clus-
ters.
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